\qquad
\qquad Period: \qquad
Part I: Multiple Choice.

1) The point $A(-7,3)$ is translated onto A^{\prime} by the translation $x, y \rightarrow x+5, y-4$. The coordinates of A^{\prime} are
\qquad .
[A] $(-2,-1)$
[B] $(-12,7)$
$[C](2,-7)$
[D] $(5,-4)$
2) The point $(5,-9)$ is the image under the translation $x, y \rightarrow x+3, y+2$. What is the preimage?
[A] $(2,-11)$
[B] $(8,-7)$
$[C](2,-7)$
[D] $(8,-11)$
3) What is the reflection image of $(5,-3)$ across the line $y=-x$?
$[A](-3,5)$
[B] $(-3,-5)$
$[C](3,-5)$
$[\mathrm{D}](-5,3)$
4) The vertices of $\triangle P Q R$ are $P(3,-1), Q(-2,7)$ and $R(6,5)$. Find the reflection of $\triangle P^{\prime} Q^{\prime} R^{\prime}$ in the line $y=x$.
5) The graph of $\overleftrightarrow{M N}$ below represents the equation $y=\frac{2}{3} x-2$. If $\overleftrightarrow{M N}$ is rotated counterclockwise 270° about the origin, what will be the new coordinates of point N ?

$[A](-3,0) \quad[B](0,3)$
$[C](3,0)$
[D] (0, -3)

Part II: Skills Check.
6) $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a translation.
a) Write the rule for the translation.
b) Suppose $\triangle A B C$ is translated using the rule $x, y \rightarrow x-5, y+1$. What are the coordinates of the vertices of its image?

7) In the diagram, the quadrilateral is rotated about point P. What is the value of y ?

8) Line p passes through points $\mathrm{J}(2,5)$ and $\mathrm{K}(-14,13)$. Line q is the image of line p after line p is reflected in the x-axis. Find the slope of line q.

9) Identify the coordinates of $(-1,3)$ after a 180° counter-clockwise rotation about the origin and then a 90° clockwise rotation about the origin.
10) What is the degree of rotation on the minute hand of a clock after 20 minutes have passed?
11) Draw the figure rotated about the origin 90°.

12) Draw the figure reflected over $\mathrm{y}=3$.

13) What are the coordinates of the image of $\triangle Q R S$ if the triangle is first reflected over the x-axis and then rotated 180° ?

14) The vertices of $\triangle A B C$ are $A(-4,4), B(-5,0)$, and $C(-1,3)$. What are the coordinates of the image when $\triangle A B C$ is first translated using the rule $(x, y) \rightarrow(x+6, y-1)$ and is then reflected over the y-axis?

15) Where is the image of point $K(1,4)$ located if K is reflected in the line $y=x$ and then reflected in the line $x=2$?

16) Please solve for x and y.

17) Rotate quadrilateral $A B C D 90^{\circ}$ clockwise with vertices $A(-1,4), B(0,2), C(-3,1), D(-5,3)$. Then rotate quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime} 180^{\circ}$ about the point $(-2,0)$.

18) Reflect $\Delta \mathrm{DEF}$ over the line $\mathrm{y}=-2$ with vertices $\mathrm{D}(2,6), E(-3,4)$, and $F(0,-1)$. Then rotate $\Delta \mathrm{D}^{\prime} \mathrm{E}^{\prime} \mathrm{F}^{\prime} 270^{\circ}$ clockwise about the point $(2,0)$.

Answer Key :

1. A
2. A
3. C
4. $P^{\prime}(-1,3)$
$Q^{\prime}(7,-2)$
$R^{\prime}(5,6)$
5. D
6. a. $(x, y) \rightarrow(x+5, y+3)$
b. $A^{\prime}(-4,4)$
$B^{\prime}(-1,3)$

$$
C^{\prime}(-3,1)
$$

7. $x=2, y=3$
8. $J^{\prime}(2,-5)$
$K^{\prime}(-14,-13)$
$m=\frac{1}{2}$
9. $(-1,3) \rightarrow(1,-3) \rightarrow(-3,-1)$
10. 120°
11. Coordinates: $(-1,1),(-1,3),(-4,2)$
12. Coordinates: $(-1,4),(-1,7),(3,7)$
13. $S^{\prime}(2,-2) \rightarrow S^{\prime \prime}(-2,2)$
$Q^{\prime}(1,-5) \rightarrow Q^{\prime \prime}(-1,5)$
$R^{\prime}(5,-3) \rightarrow R^{\prime \prime}(-5,3)$
14. $A^{\prime}(2,3) \rightarrow A^{\prime \prime}(-2,3)$
$B^{\prime}(1,-1) \rightarrow B^{\prime \prime}(-1,-1)$
$C^{\prime}(5,2) \rightarrow C^{\prime \prime}(-5,2)$
15. $K^{\prime}(4,1) \rightarrow K^{\prime \prime}(0,1)$
16. $x=2, y=-1$
17. $A^{\prime}(4,1) \rightarrow A^{\prime \prime}(-8,-1)$
$B^{\prime}(2,0) \rightarrow B^{\prime \prime}(-6,0)$
$C^{\prime}(1,3) \rightarrow C^{\prime \prime}(-5,-3)$
$D^{\prime}(3,5) \rightarrow D^{\prime \prime}(-7,-5)$
18. $\quad D^{\prime}(2,-10) \rightarrow D^{\prime \prime}(12,0)$
$E^{\prime}(-3,-8) \rightarrow E^{\prime \prime}(10,-5)$
$F^{\prime}(0,-3) \rightarrow F^{\prime \prime}(5,-2)$
