Geometry H
3.4 Slopes/Equations Review Notes

Name: \qquad
Date : \qquad Period: \qquad

Learning - I can find the slope of a line

- I can use slopes of lines to identify increasing, decreasing, vertical, and horizontal lines.
targets - I can identify parallel and perpendicular lines.

The slope of a non-vertical line is the ratio of the vertical change (rise) to the horizontal change (run) between any two points on the line.

If a line in the coordinate plane passes through points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, then the slope m is:

$$
m=\frac{\text { rise }}{\text { run }}=\frac{\text { change in } y}{\text { change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

- Types of Slope:
A.

B.

C.

D.

Negative Slope
Falls from left to right

Undefined Slope
Vertical Line

Positive Slope
Rises from left to right

SECTION 1 : Finding the slope of a line from two points using the slope formula:

Ex $1:(-2,4)$ and $(-3,0)$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0-4}{-3-(-2)}=\frac{-4}{-3+2}=\frac{-4}{-1}=4$
So $m=4$.

Ex $2:(3,-1)$ and (3,-5)
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-5-(-1)}{3-3}=\frac{-5+1}{0}=\frac{-4}{0}=$ undefined

Our slope is undefined because you can never divide by zero!!

- You may recall the slope-intercept form of a line from Algebral, $\underline{y=m x+b \text {. It is called the }}$ slope-intercept form because m represents the \qquad of the line and b represents the \qquad of the line.

SECTION 2 : Identify the slope of the line and the y-intercept from the following equation.

Ex $3: y=3 x+2$

$\mathrm{m}=3$
$\mathrm{~b}=2$

Ex 4 : $y=5$

$$
\begin{aligned}
& \mathrm{m}=0 \\
& \mathrm{~b}=5
\end{aligned}
$$

\rightarrow This equation can be re-written as $y=0 x+5$
in slope-intercept form which makes our slope 0

SECTION 3 : Write an equation of a line given the slope and y-intercept.
Ex 5 : $m=\frac{1}{2}, b=-5$
Ex 6 : $m=0, b=2$
$y=m x+b$
$y=\frac{1}{2} x-5$
$y=m x+b$
$y=0 x+2$
$y=2$
SECTION 4: Write the slope-intercept form of the equation of the line through the given point with the given slope.

Ex 7 : through : $(6,-2)$, slope $=-\frac{1}{6}$.
$\rightarrow I$ know to write an equation, I need an m and a b. My m is $-\frac{1}{6}$, but I don't have a $b \ldots$....
\rightarrow To find b , use the point $(6,-2)$ and the slope $-\frac{1}{6}$ and substitute them into $y=m x+b$.

$$
\begin{aligned}
& x=6, y=-2, m=-\frac{1}{6} \text { so if } I \text { substitute those into } y=m x+b \text { then solve for } b, I \text { get }: \\
& -2=-\frac{1}{6}(6)+b \\
& -2=-1+b \\
& b=-1
\end{aligned}
$$

So my final equation using $m=-\frac{1}{6}$ and $b=-1$ is : $y=-\frac{1}{6} x-1$

- You may also recall a formula for writing equations of lines given a point and a slope:
$y-y_{1}=m\left(x-x_{1}\right)$. This formula is called the point-slope formula because (x_{1}, y_{1}) represents the coordinates of the given point, and m represents the slope. When given a point and a slope, we can use this formula instead of the slope-intercept equation!

SECTION 5 : Write the equation of the line through the given point with the given slope using the point-slope formula.

Ex 8 : through (5, 1), slope $=\frac{1}{6}$
Substitute the point and slope into $y-y_{1}=m\left(x-x_{1}\right)$.
Using $x=6, y=1, m=\frac{1}{6}$:
$y-1=\frac{1}{6}(x-5)$
$y-1=\frac{1}{6} x-\frac{5}{6} \quad \leftarrow$ Distribute the $\frac{1}{6}$ to everything in the parentheses
$y-\frac{6}{6}=\frac{1}{6} x-\frac{5}{6} \quad \leftarrow$ Turn the 1 into $\frac{6}{6}$ to make a common denominator
$y=\frac{1}{6} x+\frac{1}{6} \quad \leftarrow$ Add $\frac{6}{6}$ to each side and write your final answer in slope-intercept form

SECTION 6 : Write the slope-intercept form of the equation of the line through the given points.

Ex $9:(1,-19)$ and $(-2,-7)$
\rightarrow I know how to write an equation, I need an m and $a b$. Now I don't have an m or a b....
\rightarrow Let's find m using the slope formula and our two points!

$$
m=\frac{-7-(-19)}{-2-1}=\frac{-7+19}{-3}=\frac{12}{-3}=-4 \text { so } m=-4
$$

\rightarrow Using one of our two points given (it doesn't matter which!) let's substitute $x=1, y=-19$, and $m=-4$ into $y-y_{1}=m\left(x-x_{1}\right):$

$$
\begin{aligned}
& y--19=-4(x-1) \\
& y+19=-4 x+4 \\
& y=-4 x-15
\end{aligned}
$$

SECTION 7 : Finding Slope and Graphing Lines

Ex 10 : Find the slope of the line shown in the graph.

Solution:

Pick two "nice" points : Let $\left(x_{1}, y_{1}\right)=(-2,0)$ and $\left(x_{2}, y_{2}\right)=(3,3)$

Use the slope formula : $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$m=\frac{3-0}{3-(-2)}=\frac{3}{3+2}=\frac{3}{5}$

OR : We can count our rise and our run :

The graph (from one "nice" point to another) goes 'up' 3 units (positive rise) and to the 'right' 5 units (positive run), so our slope $m\left(\frac{\text { rise }}{\text { run }}\right)$ is $\frac{3}{5}$.

The line rises from left to right. The slope is \qquad positive .

Ex 11 : Graph an equation using slope-intercept form
Graph the equation $y=-4 x+3$

Solution:

STEP 1 Identify the slope and the y-intercept. $m=\ldots-4$ and $b=\ldots 3$.
STEP 2 Plot the point that corresponds to the y-intercept
\rightarrow Since $b=3$, our graph crosses the y-axis at 3, or at point $(0,3)$.

STEP 3 Count the slope (rise and run) to locate a second point on the line. Draw a line through the two points.
\rightarrow Since our slope is -4 , we can say $\frac{\text { rise }}{\text { run }}=\frac{-4}{1}$. Since our rise is -4 , we want to count 4 down from the y-intercept, then to the right 1 because our run is $\mathbf{+ 1}$.

STEP 4 Draw a line through your two points!
\rightarrow Since our graph is falling from the left to the right, we should have a negative slope!

Ex 12 : Graph a line using intercepts
Graph the line that has a y -intercept of 4 and an x -intercept of 5 .
\rightarrow The graph has a y-intercept of 4 , so that means the graph crosses the y-axis at $(0,4)$
\rightarrow The graph has an x-intercept of 5 , so that means the graph crosses the x-axis at $(5,0)$

Through these two points, we can draw a line!

