Geometry H
8.2 Practice Worksheet (Prop. Of Parallelograms)

Name: \qquad
Date: \qquad Period: \qquad

Find the value of each variable in the parallelogram.
1.

2.

3.

4.

5.

6.

7. $5 q-11$

8.

9. The coordinates for $\square A B C D$ are $A(-1,3), B(4,2), C(2,-1)$, and $D(-3,0)$. Plot the points and draw $\square A B C D$ on the coordinate plane. Then draw the diagonals $\overline{A C}$ and $\overline{B D}$. Label the intersection of the diagonals as point E. What are the coordinates of point E ?

10. Find the indicated measure in $\square A B C D$. Explain.
a. $A E$
b. $A D$
c. $E B$
d. $D B$
e. $A B$

f. Perimeter of $\triangle A E B$
g. $m \angle D B A$
h. $m \angle D E C$
i. $m \angle A C D$
j. $m \angle C A B$
k. Perimeter of $\square A B C D$
11. The measure of one interior angle of a parallelogram is 2.6 times the measure of another angle. Find the measure of each angle.
12. The measure of one interior angle of a parallelogram is 57.8 degrees more than the measure of another angle. Find the measure of each angle.
13. Use the diagram of $\square M N O P$ at the right.
a) Use the distance formula to show $\overline{M P} \cong \overline{N O}$
b) Use the distance formula to show $\overline{M N} \cong \overline{P O}$.
c) Find the slopes of $\overline{M P}$ and $\overline{N O}$.

d) How do the slopes found in part c show that $\overline{M N}$ and $\overline{P O}$ are parallel?
e) Use the midpoint formula to show that the diagonals bisect each other.
14. Complete the following proof.

GIVEN: MATH is a \square.
$\overline{M N} \cong \overline{A T}$
PROVE: $\angle 1 \cong \angle 2$

Statements	Reasons
1. MATH is a	1. _-?
2. ?	2. Given
3. $\overline{M H} \cong \overline{A T}$	3.
4.	4. Transitive Property of \cong
5. $\angle 1 \cong \angle 2$	5.

The given point coordinates represent three vertices of a parallelogram. Write the coordinates of each other point that could be the fourth vertex. Justify your answers.
15. $A(2,0), B(3,5), C(6,0)$
16. J(a, b), K(a+2, b), L(a+4, b+3)

Answer Key

1. $a=11, b=12$
2. $c=6, d=9$
3. $e=8, t=3$
4. $g=21, h=8$
5. $j=14, k=2$
6. $m=7, n=3$
7. $p=4, q=8$
8. $r=5, s=7$
9.

10. a) 3; Diagonals of \square bisect each other.
b) 5; Opposite sides of \square are \cong.
c) 4; Pythagorean Theorem
d) 8; Diagonals of \square bisect each other, so $D B=2 E B$.
e) 5; Pythagorean Theorem or SAS \cong Theorem
f) $12 ; P=3+4+5=12$
g) 37°; Alternate Interior Angles Theorem
h) 90°; Definition of a right triangle
i) 53°; Triangle Sum Theorem
j) 53°; Alternate Interior Angles Theorem
k) 20 ; All $4 \Delta^{\prime}$ s are \cong with hypotenuse $=5$.
11. 50° and 130°
12. 61.1° and 118.9°
13. a) $M P=8 \sqrt{2}$ and $N O=8 \sqrt{2}$, so $\overline{M P} \cong \overline{N O}$
b) $M N=4$ and $P O=4$, so $\overline{M N} \cong \overline{P O}$
c) slope of $\overline{M P}=1$, and slope of $\overline{N O}=1$
d) Parallel lines have the same slope.
e) The midpoint of $\overline{M O}$ is $(-1,1)$ and midpoint of $\overline{P N}$ is $(-1,1)$. Since they intersect each other at their midpoint, they bisect each other.
14. Given; $\overline{M N} \cong \overline{A T}$; Opposite sides of \square are \cong.; $\overline{M N} \cong \overline{M H}$; Base Angles Theorem
15. $(-1,5),(7,5)$
16. $(a+2, b+3),(a+6, b+3)$

