Name: _	
Date:	Period:

Find the value of each variable in the parallelogram.

- 9. The coordinates for □ ABCD are A(-1, 3), B(4, 2), C(2, -1), and D(-3, 0). Plot the points and draw □ ABCD on the coordinate plane. Then draw the diagonals AC and BD. Label the intersection of the diagonals as point E. What are the coordinates of point E?

- 10. Find the indicated measure in \square ABCD. Explain.
 - **a.** *AE*
 - **b.** *AD*
 - **c.** *EB*
 - **d.** *DB*
 - **e.** *AB*
 - **f.** Perimeter of $\triangle AEB$
 - g. $m \angle DBA$
 - **h.** $m \angle DEC$
 - i. $m \angle ACD$
 - **j.** $m \angle CAB$
 - **k.** Perimeter of $\square ABCD$
- 11. The measure of one interior angle of a parallelogram is 2.6 times the measure of another angle. Find the measure of each angle.
- 12. The measure of one interior angle of a parallelogram is 57.8 degrees more than the measure of another angle. Find the measure of each angle.

- 13. Use the diagram of \square *MNOP* at the right.
 - a) Use the distance formula to show $\overline{MP} \cong \overline{NO}$
 - b) Use the distance formula to show $\overline{MN} \cong \overline{PO}$.
 - c) Find the slopes of \overline{MP} and \overline{NO} .
 - d) How do the slopes found in part c show that \overline{MN} and \overline{PO} are parallel?
 - e) Use the midpoint formula to show that the diagonals bisect each other.

14. Complete the following proof.	Statements	Reasons
$\frac{\mathbf{GIVEN}: MATH \text{ is a } \square}{\overline{MN} \cong \overline{AT}}$	1. <i>MATH</i> is a .	1. <u>?</u>
PROVE: $\angle 1 \cong \angle 2$	2. ?	2. Given
MA	3. $\overline{MH} \cong \overline{AT}$	3. <u>?</u>
	4. ?	4. Transitive Property of \cong
	5. $\angle 1 \cong \angle 2$	5. <u>?</u>
H N T		

The given point coordinates represent three vertices of a parallelogram. Write the coordinates of each other point that could be the fourth vertex. *Justify* your answers.

15. A(2, 0), B(3, 5), C(6, 0)

16. J(a, b), K(a+2, b), L(a+4, b+3)

Answer Key

1. a = 11, b = 122. c = 6, d = 93. e = 8, t = 34. g = 21, h = 85. j = 14, k = 26. m = 7, n = 37. p = 4, q = 88. r = 5, s = 79.

- **10.** a) 3; Diagonals of \square bisect each other.
 - b) 5; Opposite sides of \square are \cong .
 - c) 4; Pythagorean Theorem
 - d) 8; Diagonals of \square bisect each other, so DB = 2EB.
 - e) 5; Pythagorean Theorem or SAS \cong Theorem
 - f) 12; P = 3 + 4 + 5 = 12
 - g) 37°; Alternate Interior Angles Theorem
 - h) 90°; Definition of a right triangle
 - i) 53°; Triangle Sum Theorem
 - j) 53°; Alternate Interior Angles Theorem
 - k) 20; All 4 Δ 's are \cong with hypotenuse = 5.

11. 50° and 130°

- **12.** 61.1° and 118.9°
- **13.** a) $MP = 8\sqrt{2}$ and $NO = 8\sqrt{2}$, so $\overline{MP} \cong \overline{NO}$
 - b) MN = 4 and PO = 4, so $\overline{MN} \cong \overline{PO}$
 - c) slope of $\overline{MP} = 1$, and slope of $\overline{NO} = 1$
 - d) Parallel lines have the same slope.
 - e) The midpoint of \overline{MO} is (-1,1) and midpoint of \overline{PN} is (-1,1). Since they intersect each other at their midpoint, they bisect each other.
- **14.** Given; $\overline{MN} \cong \overline{AT}$; Opposite sides of \square are \cong .; $\overline{MN} \cong \overline{MH}$; Base Angles Theorem **15.** (-1, 5), (7, 5)
- **16.** (a + 2, b + 3), (a + 6, b + 3)