Decide whether you are given enough information to determine that the quadrilateral is a parallelogram.

- 1) Opposite sides are parallel. Yes
- 2) Opposite sides are congruent Yes
- 3) Two pairs of consecutive sides are congruent. No 4) Two pairs of consecutive angles are congruent. No
- 5) Diagonals are congruent. No.

- 6) Diagonals bisect each other. Yes
- 7) All four sides are congruent. Yes
- 8) Consecutive angles are supplementary. Yes

Prove that the points represent the vertices of a parallelogram. Use the method indicated.

9) A(-4, 7), B(3, 0), C(2, -5), D(-5, 2); Both pairs of opposite sides are parallel.

Stope
$$_{\overline{AD}} = \frac{2-7}{-5+4} = \frac{-5}{-1} = 5$$

Stope $_{\overline{BC}} = \frac{-5-0}{2-3} = \frac{-5}{-1} = 5$

Stope
$$AB = \frac{0.7}{3.14} = \frac{-1}{1} = -1$$

Stope $CD = \frac{2+5}{-5-2} = \frac{7}{-1} = -1$

*Since both pairs of opposite sides are parallel, ABCD is a parallelogram

10) A(-2, 8), B(2, 7), C(5, 1), D(1, 2); Both pairs of opposite sides are congruent.

AB =
$$\sqrt{(2+2)^2 + (1-8)^2} = \sqrt{(4)^2 + (-1)^2} = \sqrt{16+1} = \sqrt{17}$$

$$AB = \sqrt{(2+2)^2 + (1-8)^2} = \sqrt{(4)^2 + (-1)^2} = \sqrt{16+1} = \sqrt{17}$$

$$AB = \sqrt{(1-5)^2 + (2-1)^2} = \sqrt{(-4)^2 + (1)^2} = \sqrt{16+1} = \sqrt{17}$$

AD =
$$\sqrt{(1+2)^2 + (2-8)^2} = \sqrt{(3)^2 + (-6)^2} = \sqrt{9+36} = \sqrt{45} = 3\sqrt{5}$$

BC = $\sqrt{(5-2)^2 + (1-7)^2} = \sqrt{(3)^2 + (-6)^2} = \sqrt{9+36} = \sqrt{45} = 3\sqrt{5}$

* since both pairs of opposite sides are congruent, ABCD is a parallel ogram

Find all possible coordinates for the fourth vertex of a parallelogram with the given vertices. Then draw the parallelogram on the graph.

Describe how to prove that ABCD is a parallelogram.

since a pair of corr. angles

15 =, then AB/CD. since 14) A

AB/CD, and AB = CD

then one pair of sides is
both congruent; parallel

ABCD is a parallelogram

Both pairs of opp angles are = (<B=<D, <A=<C)

So ABCD is a parallelog ram

15) The diagram shows a battering ram which was used in ancient times to break through walls. A log is suspended on ropes of equal length $(\overline{GF} \text{ and } \overline{HJ})$. The log swings, causing quadrilateral FGHJ to shift. In the diagram, $\overline{GH} \cong \overline{FJ}$, and \overline{GH} is parallel to the ground.

- b) Explain why the log is always parallel to the ground.

 Since we know fohj is a parallelogram (a) then GH//FJ. Since the ropes are equal length, FJ will always be parallel to the ground.
- 16) Complete the following proof. Given: $\triangle ABC \cong \triangle CDA$ Prove: ABCD is a parallelogram.

Statements	Reasons
1. $\triangle ABC \cong \triangle CDA$	1. Given
2. <i>AB</i> ≅	2. CPCTC
$\overline{BC} \cong \overline{AD}$	
3. ABCD is a parallelogram	3. both pairs of opp-sides
	are 🖺

17) How many triangles are formed by drawing diagonals from one vertex in the figure? Find the sum of the measures of the interior angles in the figure.

B) 5, 1080°

€ 6, 900°

₩ 6, 1080°

- 5.180 = 900°
- 18) The sum of the measures of the interior angles of a convex quadrilateral is _

A) 180°

- B) 270°
- 360°
- D) 540°
- 19) The measure of each interior angle of a regular hexagon is ______.

$$Int = (6-2) \cdot 180 = 4.180 = 720 = 120^{\circ}$$

- (B)) 120°
- C) 15°
- D) 60°
- 20) The measure of each exterior angle of a regular octagon is ______.

- B) 67.5°
- 45°
- D) 135°
- E)
- 21) Find the value of x. (The figure may not be drawn to scale.)

22) Find the measure of each exterior angle of a regular polygon with 16 sides. E n=16

23) Find the measure of the missing angle:

24) Find the value of x.

25) Find the values of x and y.

26) Find the number of sides of a convex polygon if the measures of its interior angles have a sum of 2880°.

27) Find the number of sides of a regular polygon with each interior angle equal to 171°.

$$|71 = (n-2) \cdot 180$$

$$-9n = -360$$

$$|71n = (n-2) \cdot 180$$

$$|7n = 40$$

28) Find the measure of an interior angle and an exterior angle of a regular polygon with 20 sides.

29) Find the measure of an interior angle and the measure of an exterior angle for a regular 32-gon.

30) Find each exterior angle measure in the diagram below

$$(x+35)^{\circ}$$
 $(x+15)^{\circ}$
 $(x+15)^{\circ}$
 $(x+15)^{\circ}$
 $(x+15)^{\circ}$
 $(x+15)^{\circ}$
 $(x+15)^{\circ}$
 $(x+15)^{\circ}$
 $(x+15)^{\circ}$
 $(x+15)^{\circ}$
 $(x+120=360)$
 $(x+120=360)$
 $(x+120=360)$
 $(x+120=360)$
 $(x+120=360)$
 $(x+120=360)$
 $(x+120=360)$
 $(x+120=360)$
 $(x+120=360)$

- 31) For parallelogram PQLM, if $m \angle PML = 83^{\circ}$, then $m \angle PQL =$
 - A) $m \angle PQM$
 - (B)) 83°
 - C) 97°
 - D) $m \angle QLM$

- 32) Consecutive angles in a parallelogram are always ______.
 - A) Congruent angles
 - B) Complementary angles
 - (c) Supplementary angles
 - D) Vertical angles
- 33) Choose the statement that is NOT ALWAYS true.

 For any parallelogram ______.

- B) Opposite sides are congruent
- (C)) The diagonals are perpendicular
- Opposite sides are congruent
- 34) Find the value of the variables in the parallelogram.

$$x = 55^{\circ}, y = 21^{\circ}, z = 104^{\circ}$$

$$x = 10.5^{\circ}, y = 52^{\circ}, z = 159^{\circ}$$

35) If $ON = x^2$, LM = 3x + 10, NM = x + 4, and OL = 3y + 3, find the values of x and y given that LMNO is a parallelogram. $x^2 = 3x + 10$ If X = 5: 3y + 3 = 9If X = -3: 3y + 3 = 2

$$x^{2}-3x-10=0$$

 $(x-5)(x+2)=0$
 $x=5$ $x=-2$

Check:
$$3(2)+3$$

= $6+3$
= $9 \bigcirc$

$$3y = -1$$
 $y = -\frac{1}{3}$
Check: $3(-\frac{1}{3}) + 3$

Check:
$$3(-1/3) + 3$$

= -1+3
= 2

36) Complete the statement for parallelogarm ABCD. Justify your answer.

37) Find AM in the parallelogram if PN = 10 and MO = 19.

$$\frac{1}{2}$$
 M0 = AM

38) UVWX is a parallelogram, $m\angle WXV = 17^{\circ}$, $m\angle WVX = 29^{\circ}$, XW = 41, UX = 24, UY = 15

- b) Find WV. = 24

 (opp sides are =)
- c) Find *m∠XUV*.=134°

(consecutive angles are supplementary)

d) Find UW. 15+15 = 30

(diagonals bisect each other)

- 39) FGHJ is a parallelogram, $m \angle JHG = 68^{\circ}$, JH = 34, GH = 19
 - a) Find $m \angle FJH$. = 112° (consecutive angles are supplementary)
 - b) Find JF. = 19
 (opp sides are =)
 - c) Find $m \angle GFJ$. = 68°
 - (opp angles are ≥)
 - d) Find FG. = 34
 (Opp sides are \(\Sigma\)

40) Find a fourth point, D, so that a parallelogram is formed using the vertices A(0, -4), B(5, -3), C(-4, -3), and D in any order. Plot your point and draw the parallelogram in the coordinate plane.

- (1, -2)
- (9,-4)

Answer Key

- 1) Yes ✓
- 2) Yes ✓
- 3) No 🗸
- 4) No 🗸
- 5) No 🗸
- 6) Yes ✓
- 7) Yes ✓
- 8) Yes
- 9) Slope of \overline{AB} = slope of \overline{CD} = -1; $\sqrt{}$ Slope of \overline{BC} = slope of \overline{DA} = 5, Since both pairs of opposite sides are parallel, ABCD is a parallelogram.
- 10) $AB = CD = \sqrt{17}$; $BC = DA = 3\sqrt{5}$. Since both pairs of opposite sides are congruent, ABCD is a parallelogram.
- 11) (8, 6), (0, -8), and (-8, 10) \checkmark

12) (6,-1), (0,-7) and (-4, 5) ✓

- 13) $\overline{AB} \parallel \overline{CD}$ by Corr. Angles $\sqrt{}$ Converse. Since one pair of opposite sides is both parallel and congruent, ABCD is a parallelogram.
- 14) Since both pairs of opposite angles are congruent, ABCD is a parallelogram.
- 15) a) $\overline{GF} \cong \overline{HJ}$ and $\overline{GH} \cong \overline{FJ}$, so *FGHJ* is a parallelogram since both pairs of opposite sides are congruent. b)FGHJ is always a □, so $\overline{GH} \parallel \overline{FI}$. Because \overline{GH} is parallel to the ground, then \overline{FI} is also parallel to the ground. The moving log is always parallel to the ground.

- 16) Given; \overline{CD} ; \overline{AD} ; CPCTC; In a quadrilateral, if both pair of opp. Sides are congruent, then it is a parallelogram.
- 17) A 🗸
- 18) C √
- 19) B 🗸
- 20) C 🗸
- 21) D 🗸
- 22) C 🗸 23) 114° V
- 24) 128° 🗸
- 25) X=103, y = 66 🗸 26) 18 🗸
- 27) 40 🗸 28) Int angle: 162°, ext angle: 18°
- 29) ≈ 168.8°, ≈ 11.2° ✓
- 30) 55°, 60°, 75°, 80° 🗸
- 31) B √
- 32) C ✓
- 33) C ✓
- 34) B 🗸
- 35) X = 5, $y = 2 \sqrt{and} X = -2$ and $y = -\frac{1}{3}$
- 36) \overline{BC} , opp. Sides of parallelogram are congruent V
- 37) 9.5 V 38) a) 46° b) 24 c) 134° d) 30 🗸
- 39) a) 112° b) 19 c) 68° d) 34 🗸
- 40) (1, -2), (9, -4), or (-9, -4)