\qquad
7.7 - Solving Right Triangles

Date: \qquad Period: \qquad

- I can use the inverse trigonometric ratios to find angle measures in right triangles.
- I can apply my knowledge of trigonometric ratios to solve right triangles.

If we know sine, cosine, or tangent ratio for an acute angle in a right triangle, we can use the inverse trigonometric function to find the measure of the angle.

Symbols	Inverse Trigonometric Functions
Inverse Sine $\sin A=x \Rightarrow m \angle A=\sin ^{-1} x$	If
Inverse Cosine $\cos B=x \Rightarrow m \angle B=\cos ^{-1} x$	
If $\tan C=x \Rightarrow m \angle C=\tan ^{-1} x$	4.2 in.

Example 1: Use inverse tangent to find angle measure

a) Find the measure of $\angle P$.
$Q \square$
b)

Example 2: Use inverse sine and inverse cosine to find angle measures.
Let $\angle A$ and $\angle B$ be acute angles in a right triangle. Use a calculator to approximate the measure of $\angle A$ and $\angle B$ to the nearest tenth of a degree.
a) $\sin A=0.19$
b) $\cos B=0.56$

* When solving a right triangle, your goal is to find the measures of all three angles and the lengths of all three sides.

Example 3: Solve a right triangle

Solve the right triangle. Round decimal answers to the nearest tenth.

Example 4: Solve a real-world problem

You are building a track for a model train. You want the track to incline from the first level to the second level, 4 inches higher, in 96 inches. Is the angle of elevation less than 3° ?

