

- I can use the inverse trigonometric ratios to find angle measures in right triangles.
- I can apply my knowledge of trigonometric ratios to solve right triangles.

If we know sine, cosine, or tangent ratio for an acute angle in a right triangle, we can use the *inverse trigonometric function* to find the measure of the angle.

Inverse Trigonometric Functions	
Symbols	Examples
Inverse Sine	
If $\sin A = x \implies m \angle A = \sin^{-1} x$	15 cm
Inverse Cosine	E _□ F
$If \cos B = x \implies m \angle B = \cos^{-1} x$	1.25 m 3 m
Inverse Tangent	A
If $tanC = x \Rightarrow m \angle C = tan^{-1} x$	4.2 in. C 6.5 in.

Example 1: Use inverse tangent to find angle measure

a) Find the measure of $\angle P$.

Example 2: Use inverse sine and inverse cosine to find angle measures.

Let $\angle A$ and $\angle B$ be acute angles in a right triangle. Use a calculator to approximate the measure of $\angle A$ and $\angle B$ to the nearest tenth of a degree.

a)
$$\sin A = 0.19$$

b)
$$\cos B = 0.56$$

When solving a right triangle, your goal is to find the measures of all three angles and the lengths of all three sides.

Example 3: Solve a right triangle

Solve the right triangle. Round decimal answers to the nearest tenth.

Example 4: Solve a real-world problem

You are building a track for a model train. You want the track to incline from the first level to the second level, 4 inches higher, in 96 inches. Is the angle of elevation less than 3°?

