Geometry H

4.8 - Perform Congruence Transformations Notes

Name:	Keu		
Date:	J	Period:	

- I can identify congruence transformations.
- I can find the image of reflections in the coordinate plane.

A congruence transformation, also known as an isometry, is a transformation that changes the position of a figure without changing its size or shape. There are three types of congruence transformations –

- 1. Translation (slide)
- 2. Reflection (flip)
- 3. Rotation (turn).

In a transformation, the original figure is called the preimage, and the resulting figure is called the image. Arrow notation (→) is used to describe a transformation, and prime notation (') is used to label the image.

Example 1: Identify transformations

Name the type of transformation demonstrated in each picture below.

Rotation

Translation

Reflection

about a point in a straight path

in a vertical line

A translation is a transformation in which all of the points of a figure are moved the same distance and in the same direction. On the coordinate plane, translations can be described by a rule such as $(x,y) \rightarrow (x+a, y+b)$, where a represents the horizontal change and b represents the vertical change.

Example 2: Translate a figure in the coordinate plane.

 ΔEFG has vertices E(-4, -1), F(-1, 3) and G(0, -4). Find the coordinates of $\Delta E'F'G'$ after a translation $(x,y) \rightarrow (x+4,y-1)$

Solution:

$$E(-4, -1) \rightarrow E'(-4 + 4, -1 - 1) \rightarrow E'(0, -2)$$

$$F(-1, 3) \rightarrow F'(-1 + 4, 3 - 1) \rightarrow F'(3, 2)$$

$$G(0,-4) \rightarrow G'(0+4,-4-1) \rightarrow G'(4,-5)$$

*** NOW TRY PROBLEM 1 ON THE NEXT PAGE! ***

Example 3: Write the coordinate notation for a translation

Maddie and Noah are tossing a flying disc. Maddie stands at (2, 5) and throws the disc to Noah at (11, 0). Write the coordinate notation for the translation from Maddie to Noah.

Solution:

$$(2,5) \rightarrow (11,0)$$

To get from x-value 2 to x-value 11, add 9: (x + 9)

To get from y-value 5 to y-value 0, subtract 5: (y-5)

So the rule is : $(x, y) \rightarrow (x + 9, y - 5)$

NOW TRY PROBLEMS 2 & 3 ON THE NEXT PAGE!

Example 4: Use coordinate notation to find a point

A point on an image and the translation are given. Find the corresponding point on the original figure.

Point on image: (3, -2); translation $(x, y) \rightarrow (x - 5, y + 2)$

Solution:

Since the point given is already translated, we want to do the **opposite** of what the rule tells us to find the original point:

x-value of 3: The rule is (x - 5), so we will do the opposite and add 5 to the x-value of 3 to get 8.

y-value of -2: The rule is (y + 2), so we will do the opposite and subtract 2 from the y-value of -2 to get -4.

So the original point is (8, -4)

*** NOW TRY PROBLEM 4 ON THE NEXT PAGE! ***

TRY THESE - TRANSLATIONS:

1. Quadrilateral ABCD has coordinates A(-3,1), B(2, 3), C(3, 0) and D(-1, -1). Draw ABCD and its image under the translation $(x, y) \rightarrow (x+2, y-3)$. State the image coordinates.

$$A(-3,1) \rightarrow (-3+2,1-3) \rightarrow A'(-1,-2)$$

$$B(2,3) \rightarrow (2+2,3-3) \rightarrow B'(4,0)$$

$$C(3,0) \rightarrow (3+2,0-3) \rightarrow C'(5,-3)$$

$$D(-1,-1) \rightarrow (-1+2,-1-3) \rightarrow D'(1,-4)$$

2. Use coordinate notation to describe the translation. 4 units to the left and 2 units down

$$(x,y) \rightarrow (x-4, y-2)$$

3. Complete the statement using the description of the translation. In the description, points (0, 3) and (2, 5) are points of a hexagon.

If (0,3) translates to (1, 2), then (2, 5) translates to _____(3, 4)

Rule:
$$(X_1Y) \rightarrow (X+1, Y-1)$$
 (2+1, 5-1)

4. A point on an image and the translation are given. Find the corresponding point on the original figure.

Point on image: (6, -9); translation $(x, y) \rightarrow (x-7, y-4)$

$$X$$
-coord: $6+7 = 13$ $\Rightarrow (13,-5)$

Answers:

1. A'(-1, -2); B'(-1, -2); C'(5, -3); D'(1, -4) 2.
$$(x, y) \rightarrow (x - 4, y - 2)$$
 3. $(3, 4)$ 4. $(13, -5)$

A reflection uses a line of reflection to create a mirror image of the original figure.

INVESTIGATION – REFLECTIONS IN THE COORDINATE PLANE

REFLECTION IN Y-AXIS

- 1. On the coordinate plane, draw ΔMNP , with vertices M(2, 4), N(4, 2), and P(3, -2).
- 2. Place patty paper over the grid and trace ΔMNP and the axes. Label your traced triangle $\Delta M'N'P'$

- 3. Reflect ΔMNP in the y-axis by flipping the patty paper, making sure you line up the axes.
- 4. Record your coordinates for $\Delta M'N'P'$ in the table below. Can you write a rule to show the transformation from $\Delta MNP \rightarrow \Delta M'N'P'$?

Preimage coordinates (ΔMNP)	Image Reflected in y-axis $(\Delta M'N'P')$
M (2, 4)	M' (-a ,4)
N (4, 2)	N'(~4, a)
P (3, -2)	P' (-3 ,-a)
(x, y)	(-x, y)

- ✓ What happened to the x-coordinates under the reflection in the y-axis? They switched signs
- ✓ What happed to the y-coordinates under the reflection in the y-axis? They stayed the same
- ✓ What rule describes the reflection across the y-axis? $(x,y) \rightarrow (-x,y)$

• REFLECTION IN X-AXIS

- 5. On the coordinate plane, draw ΔTUV , with vertices T(-4,1), U(-3, 4), and V(2, 3).
- 6. Place patty paper over the grid and trace ΔTUV and the axes. Label your traced triangle $\Delta T'U'V'$
- 7. Reflect ΔTUV in the x-axis by flipping the patty paper, making sure you line up the axes.

Preimage coordinates (ΔTUV)	Image Reflected in y-axis ($\Delta T'U'V'$)
T (-4, 1)	T'(-4,-1)
U (-3, 4)	U' (-3 ,-4)
V (2, 3)	V' (2 , -3)
(x, y)	(x , -4)

- ✓ What happened to the x-coordinates under the reflection in the x-axis? They stayed the same
- ✓ What happed to the y-coordinates under the reflection in the x-axis? They Switched Signs
- ✓ What rule describes the reflection across the y-axis? $(x,y) \rightarrow (x,-y)$