Geometry H
4.8 - Perform Congruence Transformations Notes

Name: $\qquad$
Date: $\qquad$ Period: $\qquad$
LEARNing

- I can identify congruence transformations.
- I can find the image of reflections in the coordinate plane.

TARGETS

A congruence transformation, also known as an isometry, is a transformation that changes the position of a figure without changing its size or shape. There are three types of congruence transformations -

1. Translation (slide)
2. Reflection (flip)
3. Rotation (turn).

In a transformation, the original figure is called the preimage, and the resulting figure is called the image. Arrow notation $(\rightarrow)$ is used to describe a transformation, and prime notation (') is used to label the image.


## Example 1: Identify transformations

Name the type of transformation demonstrated in each picture below.
a.

b.

c.

about a point
in a straight path
in a vertical line

A translation is a transformation in which all of the points of a figure are moved the same distance and in the same direction. On the coordinate plane, translations can be described by a rule such as $(x, y) \rightarrow(x+a, y+b)$, where a represents the horizontal change and $b$ represents the vertical change.

## Example 2: Translate a figure in the coordinate plane.

$\Delta E F G$ has vertices $\mathrm{E}(-4,-1), \mathrm{F}(-1,3)$ and $\mathrm{G}(0,-4)$. Find the coordinates of $\Delta E^{\prime} F^{\prime} G^{\prime}$ after a translation $(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}+4, \mathrm{y}-1)$

## Solution:

$E(-4,-1) \rightarrow E^{\prime}(-4+4,-1-1) \rightarrow E^{\prime}(0,-2)$
$F(-1,3) \rightarrow F^{\prime}(-1+4,3-1) \rightarrow \quad F^{\prime}(3,2)$
$\mathrm{G}(0,-4) \rightarrow \mathrm{G}^{\prime}(0+4,-4-1) \rightarrow \mathbf{G}^{\prime}(4,-5)$


## *** NOW TRY PROBLEM 1 ON THE NEXT PAGE! ***

## Example 3: Write the coordinate notation for a translation

Maddie and Noah are tossing a flying disc. Maddie stands at $(2,5)$ and throws the disc to Noah at (11, $0)$. Write the coordinate notation for the translation from Maddie to Noah.

## Solution:

$(2,5) \rightarrow(11,0)$
To get from $x$-value 2 to $x$-value 11, add 9: $(x+9)$
To get from y-value 5 to $y$-value 0 , subtract 5 : $(y-5)$

So the rule is : $(x, y) \rightarrow(x+9, y-5)$
***NOW TRY PROBLEMS 2 \& 3 ON THE NEXT PAGE!***

## Example 4: Use coordinate notation to find a point

A point on an image and the translation are given. Find the corresponding point on the original figure.

Point on image: (3, -2); translation $(x, y) \rightarrow(x-5, y+2)$

## Solution:

Since the point given is already translated, we want to do the opposite of what the rule tells us to find the original point:
$x$-value of 3: The rule is $(x-5)$, so we will do the opposite and add 5 to the $x$-value of 3 to get 8 .
$y$-value of -2 : The rule is $(y+2)$, so we will do the opposite and subtract 2 from the $y$-value of -2 to get -4 .
So the original point is $(8,-4)$

## TRY THESE - TRANSLATIONS:

1. Quadrilateral $A B C D$ has coordinates $A(-3,1), B(2,3), C(3,0)$ and $D(-1,-1)$. Draw $A B C D$ and its image under the translation $(x, y) \rightarrow(x+2, y-3)$. State the image coordinates.

2. Use coordinate notation to describe the translation.

4 units to the left and 2 units down
3. Complete the statement using the description of the translation. In the description, points $(0,3)$ and $(2,5)$ are points of a hexagon.

If $(0,3)$ translates to $(1,2)$, then $(2,5)$ translates to $\qquad$ -.
4. A point on an image and the translation are given. Find the corresponding point on the original figure.

Point on image: $(6,-9)$; translation $(x, y) \rightarrow(x-7, y-4)$

## Answers:

1. $A^{\prime}(-1,-2) ; B^{\prime}(-1,-2) ; C^{\prime}(5,-3) ; D^{\prime}(1,-4)$
2. $(x, y) \rightarrow(x-4, y-2)$
3. $(3,4)$
4. $(13,-5)$

A reflection uses a line of reflection to create a mirror image of the original figure.


## INVESTIGATION - REFLECTIONS IN THE COORDINATE PLANE

- REFLECTION IN Y-AXIS

1. On the coordinate plane, draw $\triangle M N P$, with vertices $M(2,4), N(4,2)$, and $P(3$, $2)$.
2. Place patty paper over the grid and trace $\triangle M N P$ and the axes. Label your traced triangle $\Delta M^{\prime} N^{\prime} P^{\prime}$
3. Reflect $\triangle M N P$ in the $y$-axis by flipping the patty paper, making sure you line up the axes.

4. Record your coordinates for $\Delta M^{\prime} N^{\prime} P^{\prime}$ in the table below. Can you write a rule to show the transformation from $\triangle M N P \rightarrow \Delta M^{\prime} N^{\prime} P^{\prime}$ ?

| Preimage coordinates $(\boldsymbol{\Delta M N P})$ | Image Reflected in $\mathbf{y}$-axis $\left(\boldsymbol{\Delta} \boldsymbol{M}^{\prime} \boldsymbol{N}^{\prime} \boldsymbol{P}^{\prime}\right)$ |
| :---: | :---: |
| $\mathrm{M}(2,4)$ | $\left.\mathrm{M}^{\prime}(),\right)$ |
| $\mathrm{N}(4,2)$ | $\mathrm{N}^{\prime}()$, |
| $\mathrm{P}(3,-2)$ | $\mathrm{P}^{\prime}()$, |
| $(\mathrm{x}, \mathrm{y})$ | $(\mathrm{l}, \mathrm{l}$ |

$\checkmark$ What happened to the x-coordinates under the reflection in the $y$-axis?
$\checkmark$ What happed to the $y$-coordinates under the reflection in the $y$-axis?
$\checkmark$ What rule describes the reflection across the $y$-axis?

## - REFLECTION IN X-AXIS

5. On the coordinate plane, draw $\triangle T U V$, with vertices $\mathrm{T}(-4,1), \mathrm{U}(-3,4)$, and $\mathrm{V}(2,3)$.
6. Place patty paper over the grid and trace $\triangle T U V$ and the axes. Label your traced triangle $\Delta T^{\prime} U^{\prime} V^{\prime}$
7. Reflect $\triangle T U V$ in the $x$-axis by flipping the patty paper, making sure you line up the axes.
8. Record your coordinates for $\Delta T^{\prime} U^{\prime} V^{\prime}$ in the table below. Can you write a rule to show the
 transformation from $\triangle T U V \rightarrow \Delta T^{\prime} U^{\prime} V^{\prime}$ ?

| Preimage coordinates ( $\boldsymbol{\Delta T} \boldsymbol{U} \boldsymbol{V})$ | Image Reflected in $\mathbf{y}$-axis $\left(\boldsymbol{\Delta} \boldsymbol{T}^{\prime} \boldsymbol{U}^{\prime} \boldsymbol{V}^{\prime}\right)$ |
| :---: | :---: |
| $\mathrm{T}(-4,1)$ | $\mathrm{T}^{\prime}()$, |
| $\mathrm{U}(-3,4)$ | $\mathrm{U}^{\prime}()$, |
| $\mathrm{V}(2,3)$ | $\mathrm{V}^{\prime}()$, |
| $(\mathrm{x}, \mathrm{y})$ | $(\mathrm{l})$, |

$\checkmark$ What happened to the x-coordinates under the reflection in the $x$-axis?
$\checkmark$ What happed to the $y$-coordinates under the reflection in the $x$-axis?
$\checkmark$ What rule describes the reflection across the $y$-axis?

