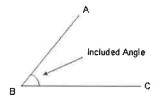


I can prove triangles congruent using SAS.

Vocabulary:

> An included angle is an angle made by two lines with a common vertex.



Side – Angle – Side Congruence Postulate (SAS)

If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.

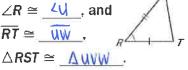
Example:

then

If Side
$$\overline{RS} \cong \overline{UV}$$
,

Angle $\angle R \cong \overline{UV}$, and

Side $\overline{RT} \cong \overline{UW}$,

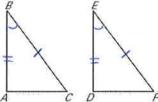


by SAS

Example 1: Use the SAS Congruence Postulate

1. State the third congruence that must be given in order to prove $\triangle ABC \cong \triangle DEF$ using the SAS Congruence Postulate.

Given: $\angle B \cong \angle E$, $\overline{BC} \cong \overline{EF}$, $\overline{AB} \cong \overline{DE}$



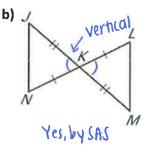
2. Decide whether enough information is given to prove that the triangles are congruent using the SAS Congruence Postulate.

 $\triangle PQT$, $\triangle RQS$

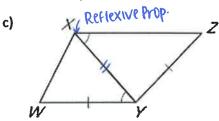
F

Yes, by SAS

 $\triangle NKJ$, $\triangle LKM$



 $\triangle WXY, \triangle ZXY$



ΔWYX has two sides and an included angle, but in ΔXY2, <X is not the included angle. So, there is not enough into to prove these triangles are ≅.

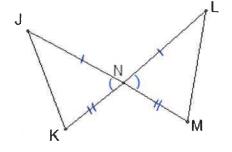
Reasons to prove angles are congruent:

- · Vertical Angles Theorem
- · Definition of Angle Bisector
- Base Angles Theorem
- Alt. Interior Angles Thm, Alt. Exterior Angles Thm, Corresponding Angles Postulate, Consec. Int Angles
 Thm
- · Givens

Example 2: Use the SAS Congruence Postulate to write a proof.

Given: $\overline{JN} \cong \overline{LN}$, $\overline{KN} \cong \overline{MN}$

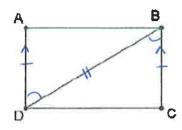
Prove: $\triangle JKN \cong \triangle LMN$



Statement	Reason
1. $\overline{JN} \cong \overline{LN}$	1. Given
2. KN≅MN	2. Given
3. <jnk> <fnw< td=""><td>3. vertical Angles Theorem</td></fnw<></jnk>	3. vertical Angles Theorem
4. $\Delta JKN \cong \Delta LMN$	4. SAS

Given: $\overline{AD} \cong \overline{CB}$, $\overline{AD} \parallel \overline{CB}$

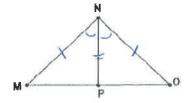
Prove: $\triangle ABD \cong \triangle CDB$



Statements	Reasons
1. $\overline{AD} \cong \overline{CB}$	1. Given
2. AD CB	2. GIVEN
3. <adb> < CBD</adb>	3. Alt. Interior Angles Thm
4. 80 \$ 80	4. Reflexive Prop
5. Δ <i>ABD</i> ≅ Δ <i>CDB</i>	5. SAS

Given: \overline{NP} bisects $\angle MNO$, $\overline{MN} \cong \overline{ON}$

Prove: $\triangle MNP \cong \triangle ONP$



Statements	Reasons
1. NP bisects ∠MNO	1. Given
2. <mnp =="" conp<="" td=""><td>2. Def. of Angle Bisector</td></mnp>	2. Def. of Angle Bisector
3. MN≅ ON	3. Given
4. NP Y NP	4. Reflexive property
5. Δ <i>MNP</i> ≅ Δ <i>ONP</i>	5. SAS