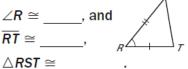


I can prove triangles congruent using SAS.

Vocabulary:

An included angle is an angle made by two lines with a common vertex.

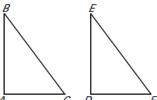

Side – Angle – Side Congruence Postulate (SAS)

If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.

Example:

then

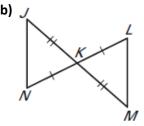
If Side $\overline{RS} \cong$, Angle $\angle R \cong \underline{\hspace{1cm}}$, and Side $\overline{RT} \cong \underline{\hspace{1cm}}$, $R \stackrel{\triangle}{\longrightarrow}$



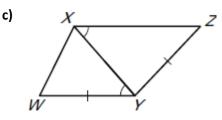
Example 1: Use the SAS Congruence Postulate

1. State the third congruence that must be given in order to prove $\triangle ABC \cong \triangle DEF$ using the SAS Congruence Postulate.

Given: $\angle B \cong \angle E$, $\overline{BC} \cong \overline{EF}$, \cong



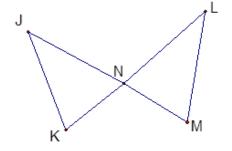
2. Decide whether enough information is given to prove that the triangles are congruent using the SAS Congruence Postulate.


 $\triangle POT$, $\triangle ROS$

a)

 $\triangle NKJ$, $\triangle LKM$

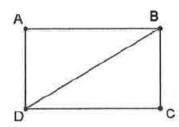
 $\triangle WXY$, $\triangle ZXY$


Reasons to prove angles are congruent:

- _____
- •
- •
- •

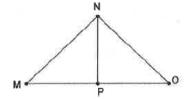
Example 2: Use the SAS Congruence Postulate to write a proof.

Given: $\overline{JN} \cong \overline{LN}$, $\overline{KN} \cong \overline{MN}$


Prove: $\Delta JKN \cong \Delta LMN$

Statement	Reason
1. $\overline{JN} \cong \overline{LN}$	1.
2. $\overline{KN} \cong \overline{MN}$	2.
3.	3.
4. Δ <i>JKN</i> ≅ Δ <i>LMN</i>	4.

Given: $\overline{AD} \cong \overline{CB}$, $\overline{AD} \parallel \overline{CB}$


Prove: $\triangle ABD \cong \triangle CDB$

Statements	Reasons
1. $\overline{AD} \cong \overline{CB}$	1.
2. $\overline{AD} \parallel \overline{CB}$	2.
3.	3.
4.	4.
5. ΔABD≅ΔCDB	5.

Given: \overline{NP} bisects $\angle MNO$, $\overline{MN} \cong \overline{ON}$

Prove: $\triangle MNP \cong \triangle ONP$

Statements	Reasons
1. NP bisects ∠MNO	1.
2.	2.
3. $\overline{MN} \cong \overline{ON}$	3.
4.	4.
5. Δ <i>MNP</i> ≅ Δ <i>ONP</i>	5.