\qquad
Date : \qquad Period : \qquad

Vocabulary:
$>$ An included angle is an angle made by two lines with a common vertex.

Side - Angle - Side Congruence Postulate (SAS)

If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.

Example:

If Side $\overline{R S} \cong$ \qquad ,
Angle $\angle R \cong$ \qquad , and
Side $\overline{R T} \cong$ \qquad _,
then
$\triangle R S T \cong$ \qquad .

Example 1: Use the SAS Congruence Postulate

1. State the third congruence that must be given in order to prove $\triangle A B C \cong \triangle D E F$ using the $S A S$ Congruence Postulate.

Given: $\angle B \cong \angle E, \overline{B C} \cong \overline{E F}$, \qquad \cong \qquad

2. Decide whether enough information is given to prove that the triangles are congruent using the SAS Congruence Postulate.

$$
\triangle P Q T, \triangle R Q S
$$

$\triangle N K J, \triangle L K M$
$\triangle W X Y, \triangle Z X Y$
a)

b)

c)

Reasons to prove angles are congruent:

- \qquad
- \qquad
\bullet \qquad
- \qquad

Example 2: Use the SAS Congruence Postulate to write a proof.
Given: $\overline{J N} \cong \overline{L N}, \overline{K N} \cong \overline{M N}$

Prove: $\triangle N K N \cong \triangle L M N$

Statement	Reason
1. $\overline{J N} \cong \overline{L N}$	1.
2. $\overline{K N} \cong \overline{M N}$	2.
3.	3.
4. $\quad \triangle J K N \cong \triangle L M N$	4.

Given: $\overline{A D} \cong \overline{C B}, \overline{A D} \| \overline{C B}$
Prove: $\triangle A B D \cong \triangle C D B$

Statements	Reasons	
1. $\overline{A D} \cong \overline{C B}$	1.	
2. $\overline{A D} \\| \overline{C B}$	2.	
3.	3.	
4.	4.	
5. $\triangle A B D \cong \triangle C D B$	5.	

Given: $\overline{N P}$ bisects $\angle M N O, \overline{M N} \cong \overline{O N}$

Prove: $\triangle M N P \cong \triangle O N P$

Statements	Reasons
1. $\overline{N P}$ bisects $\angle M N O$	1.
2.	2.
3. $\overline{M N} \cong \overline{O N}$	3.
4.	4.
5. $\triangle M N P \cong \triangle O N P$	5.

