Right <52V
Hyp: v/
Leg: vV

Geometry H Name : ch

Section 4.4 H-L Notes Date : Period:
LEARNING
e | can prove triangles congruent using H-L
TARGETS

Vocabulary:

In a right triangle, the side opposite the right angle is called the h‘JP"-*m\‘“

In a right triangle, the sides that form the right angle are called the \({}Q

In right triangle ABC, the hypotenuse is AC .

The legs are h and B¢

There is a special method for proving right triangles are congruent. This method only works for right

triangles!
Hypotenuse ~ Leg Theorem (H-L) Example: B £
If the hypotenuse and leg of one right triangle are If Hypatenuse BC = é—
congruent to the hypotenuse and leg of a second dLeEAB= DE inright triangl
right triangle, then the two triangles are congruent. and Leg AB= InFightnangles
AABC and ADEF, then A ¢ 2 F
AABC = _ADEF by Hi
i (3 rghr anges

Example 1: Using H-L to identify congruent triangles

Can you prove the following triangles are congruent? Explain.
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When writing a proof using H-L, it is important that you state the following three things in your
explanation:
o That the two triangles are right triangles.

o One pair of legs is congruent.
o The two hypotenuse are congruent.

Example 2: Proofs involving H-L
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Does a right angle always mean we will use H-L? Let’s see!
Given: AB is perpendicular bisector of CD
Prove: AABC =AABD
Statements Reasons
1. AB is perpendicular bisector of CD | 1. Gen
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