Name:	Keu	
Date :	J	Period :

I can prove triangles congruent using H-L

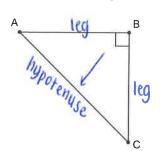
Vocabulary:

In a right triangle, the side opposite the right angle is called the hypotenuse.

In a right triangle, the sides that form the right angle are called the _______.

In right triangle ABC, the hypotenuse is ______

The legs are AB and BC



There is a special method for proving right triangles are congruent. This method only works for right triangles!

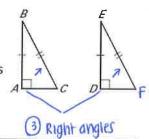
Hypotenuse – Leg Theorem (H-L)

If the hypotenuse and leg of one right triangle are congruent to the hypotenuse and leg of a second right triangle, then the two triangles are congruent.

Example:

If Hypotenuse $\overline{BC} \cong \overline{EF}$ and Leg $\overline{AB} \cong \overline{DE}$ in right triangles $\triangle ABC$ and $\triangle DEF$, then

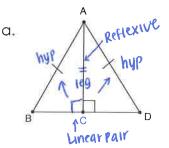
ΔABC ≅ ΔDEF by HL



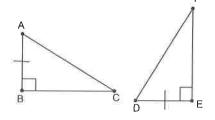
Example 1: Using H-L to identify congruent triangles

Can you prove the following triangles are congruent? Explain.

aght <'s V



b.



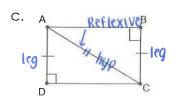
not enough into to prove =

Right <'s:

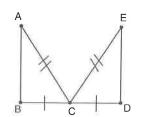
typ: not marked

Leg: V

YES, DABL & DADC by HL



d.



Right <'s: not marked

Hyp: If no right <, no hyp

leg: √

not enough into to prove ≌

Right<'s:√ Hyp:√

Yes, AAD Cº DABC by HL

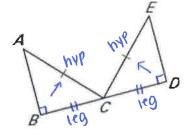
When writing a proof using H-L, it is important that you state the following three things in your explanation:

- o That the two triangles are right triangles.
- One pair of legs is congruent.
- O The two hypotenuse are congruent.

Example 2: Proofs involving H-L

a) Given: $\overline{AC} \cong \overline{EC}$; $\overline{AB} \perp \overline{BD}$; $\overline{ED} \perp \overline{BD}$; \overline{AC} is a bisector of \overline{BD}

Prove: $\triangle ABC \cong \triangle EDC$



L = perpendicular (right angles)

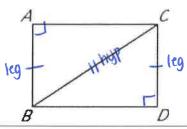
Statements	Reasons
1. \overline{AC} ≅ \overline{EC}	1. Given
2. AB ⊥ BD; ED ⊥ BD	2. Given
3. <band <="" angles<="" are="" d="" right="" td=""><td>3. Def. of Perpendicular lines</td></band>	3. Def. of Perpendicular lines
4. ΔABG and ΔDEC are right triangles	4. Def of Right Triangles
5. Ac is a bisector of BD	5. Given
6. BC 3 DC	6. Def. of segment Bisector
7. Δ <i>ABC</i> ≅ Δ <i>EDC</i>	7. HL

light e's V

ug 🗸

b) Given: $\overrightarrow{AB} \cong \overrightarrow{DC}; \overrightarrow{BA} \perp \overrightarrow{AC}; \overrightarrow{CD} \perp \overrightarrow{DB}$

Prove: $\triangle ABC \cong \triangle DCB$

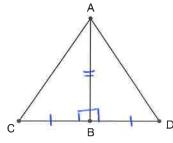


Statements	Reasons	
1. \overline{AB} ≅ \overline{DC}	1. Given	
2. $\overline{BA} \perp \overline{AC}; \overline{CD} \perp \overline{DB}$	2. Given	
3. <a <d="" and="" angles<="" are="" right="" td=""><td>3. Def. of Perpendicular Lines</td><td></td>	3. Def. of Perpendicular Lines	
4. ABC and ADCB are right triangles	4. Def. of Right Triangles	
5. <u>CB</u> ≅ <u>CB</u>	5. Reflexive Prop	
6. $\triangle ABC \cong \triangle DCB$	6. HL	Right 2's V

Does a right angle always mean we will use H-L? Let's see!

Given: \overline{AB} is perpendicular bisector of \overline{CD}

Prove: $\triangle ABC \cong \triangle ABD$



Statements	Reasons
1. \overline{AB} is perpendicular bisector of \overline{CD}	1. Given
2. < ABC and < ABD are right angles	2. Def. of Perpendicular Lines
3. DABC and DABD are right triangles	3. Det of right triangles
4. CB → DB	4. Def. of Perpendicular Bisector
5. AB \(\widetilde{AB} \)	5. Reflexive prop
6. $\triangle ABC \cong \triangle ABD$	6. SAS

ttyp / Leg V