Geometry H Section 4.4 H-L Notes

Name :	
Date : _	Period :

• I can prove triangles congruent using H-L

Vocabulary:

In a right triangle, the side opposite the right angle is called the				
In a right triangle, the sides that form the right angle are called the				
In right triangle <i>ABC</i> , the hypotenuse is The legs are and	A B C			

There is a special method for proving right triangles are congruent. This method only works for right triangles!

Hypotenuse – Leg Theorem (H-L)	Example:	B	F
If the hypotenuse and leg of one right triangle are congruent to the hypotenuse and leg of a second right triangle, then the two triangles are congruent.	If Hypotenuse $\overline{BC} \cong$ and Leg $\overline{AB} \cong$ in right triangles ΔABC and ΔDEF , then $\Delta ABC \cong$	A	

Example 1: Using H-L to identify congruent triangles

Can you prove the following triangles are congruent? Explain.

d.

When writing a proof using H-L, it is important that you state the following three things in your explanation:

- That the two triangles are right triangles.
- One pair of legs is congruent.
- The two hypotenuse are congruent.

Example 2: Proofs involving H-L

a) **Given:** $\overline{AC} \cong \overline{EC}$; $\overline{AB} \perp \overline{BD}$; $\overline{ED} \perp \overline{BD}$; \overline{AC} is a bisector of \overline{BD}

Prove: $\triangle ABC \cong \triangle EDC$

Statements	Reasons
1. $\overline{AC} \cong \overline{EC}$	1.
2. $\overline{AB} \perp \overline{BD}; \overline{ED} \perp \overline{BD}$	2.
3.	3.
4.	4.
5.	5.
6.	6.
7. $\triangle ABC \cong \triangle EDC$	7.

b) Given: $\overline{AB} \cong \overline{DC}$; $\overline{BA} \perp \overline{AC}$; $\overline{CD} \perp \overline{DB}$ Prove: $\triangle ABC \cong \triangle DCB$

	B D
Statements	Reasons
1. $\overline{AB} \cong \overline{DC}$	1.
2. $\overline{BA} \perp \overline{AC}; \overline{CD} \perp \overline{DB}$	2.
3.	3.
4.	4.
5.	5.
6. $\triangle ABC \cong \triangle DCB$	6.

Does a right angle always mean we will use H-L? Let's see

Given: \overline{AB} is perpendicular bisector of \overline{CD} **Prove:** $\triangle ABC \cong \triangle ABD$

Statements	Reasons
1. \overline{AB} is perpendicular bisector of \overline{CD}	1.
2.	2.
3.	3.
4.	4.
5.	5.
6. $\triangle ABC \cong \triangle ABD$	6.