\qquad
\qquad Period : \qquad

Vocabulary:

In a right triangle, the side opposite the right angle is called the \qquad .

In a right triangle, the sides that form the right angle are called the \qquad .

In right triangle $A B C$, the hypotenuse is \qquad .

The legs are \qquad and \qquad .

There is a special method for proving right triangles are congruent. This method only works for right triangles!

Example 1: Using H-L to identify congruent triangles

Can you prove the following triangles are congruent? Explain.
a.

b.

C.

d.

When writing a proof using H-L, it is important that you state the following three things in your explanation:

- That the two triangles are right triangles.
- One pair of legs is congruent.
- The two hypotenuse are congruent.

Example 2: Proofs involving H-L

a) Given: $\overline{A C} \cong \overline{E C} ; \overline{A B} \perp \overline{B D} ; \overline{E D} \perp \overline{B D}$; $\overline{A C}$ is a bisector of $\overline{B D}$

Prove: $\triangle A B C \cong \triangle E D C$

Statements	Reasons
1. $\overline{A C} \cong \overline{E C}$	1.
2. $\overline{A B} \perp \overline{B D} ; \overline{E D} \perp \overline{B D}$	2.
3.	3.
4.	4.
5.	5.
6.	6.
7. $\triangle A B C \cong \triangle E D C$	7.

b) Given: $\overline{A B} \cong \overline{D C} ; \overline{B A} \perp \overline{A C} ; \overline{C D} \perp \overline{D B}$ Prove: $\triangle A B C \cong \triangle D C B$

Statements	Reasons
1. $\overline{A B} \cong \overline{D C}$	1.
2. $\overline{B A} \perp \overline{A C} ; \overline{C D} \perp \overline{D B}$	2.
3.	3.
4.	4.
5.	5.
6. $\triangle A B C \cong \triangle D C B$	6.

Does a right angle always mean we will use H-L? Let's see!

Given: $\overline{A B}$ is perpendicular bisector of $\overline{C D}$
Prove: $\triangle A B C \cong \triangle A B D$

Statements	Reasons
1. $\overline{A B}$ is perpendicular bisector of $\overline{C D}$	1.
2.	2.
3.	3.
4.	4.
5.	5.
$6 . ~$.

