Name: \qquad
Date: \qquad Period: \qquad

Decide whether enough information is given to prove that the triangles are congruent. If there is enough information, state the congruence postulate or theorem you would use (SSS, SAS, or HL).

1. $\triangle G H I, \Delta K L$

2.

3.

State the third congruence that is needed to prove that $\triangle A B C \cong \Delta X Y Z$ using the given postulate or theorem.
4. GIVEN: $\angle B \cong \angle E, \overline{B C} \cong \overline{E F}$, \qquad \cong \qquad
Use the SAS Congruence Theorem
5. GIVEN: $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}$, \qquad \cong \qquad
Use the SSS Congruence Postulate
6. GIVEN:
$\overline{A C} \cong \overline{D F}, \angle A$ is a right angle and

$\angle A \cong \angle D$, \qquad \cong \qquad
Use the H-L Congruence Theorem
7. Suppose P is the midpoint of $\overline{O Q}$ in $\triangle O Q S$. If $\overline{S P} \perp \overline{O Q}$, explain why $\triangle S P O \cong \triangle S P Q$. (Hint: You may want to draw a diagram (-))

Complete the following Proofs.
8. Given: $\overline{Q S} \cong \overline{P R}, \overline{P S} \perp \overline{R S}, \overline{Q R} \perp \overline{R S}$

Prove: $\triangle P R S \cong \triangle Q S R$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
$5 . \quad \overline{R S} \cong \overline{S R}$	5.
$6 . \quad \Delta P R S \cong \triangle Q S R$	6.

9. Given: $\overline{O M} \perp \overline{L N}, \overline{M L} \cong \overline{M N}$

Prove: $\triangle O M L \cong \triangle O M N$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
$6 . \quad \triangle A B C \cong \triangle D C B$	6.

10. Given: $\quad \angle \mathrm{JKL} \& \angle \mathrm{MLK}$ are right angles
$\overline{J L} \cong \overline{M K}$
Prove: $\triangle N K L \cong \triangle M L K$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
$5 . \quad \triangle K L \cong \triangle M L K$	5.

11. Given: $\overline{A B} \cong \overline{D B}, \overline{B C} \perp \overline{A D}$

Prove: $\triangle A B C \cong \triangle D B C$

Statements	Reasons
1.	2.
2.	3.
3.	4.
4.	5.
5.	6.
6.	

Answer Key

1) Yes , by H-L
2) Yes, by SAS
3) Yes, by H-L
4) $\overline{A B} \cong \overline{D E}$
5) $\overline{A C} \cong \overline{D F}$
6) $\overline{B C} \cong \overline{E F}$
7) Since $\overline{S P} \cong \overline{S P}$ by the reflexive property, $\overline{O P} \cong \overline{Q P}$ by definition of midpoint, and $\angle S P O$ and $\angle S P Q$ are right angles by definition of perpendicular lines, then $\triangle S P O \cong \triangle S P Q$ by $S A S$
8) 9. $\overline{Q S} \cong \overline{P R}$; Given 2. $\overline{P S} \perp \overline{R S}, \overline{Q R} \perp \overline{R S}$; Given 3. $\angle P S R \& \angle Q R S$ are right angles; Def of perpendicular lines 4. $\triangle P S R \& \triangle Q R S$ are right triangles; Def of right triangles 5. Reflexive 6. HL 9) 1. $\overline{O M} \perp \overline{L N}$; Given 2. $\angle O M L \& \angle O M N$ are right angles; Def of perpendicular lines 3. $\triangle O M L$ \& $\triangle O M N$ are right triangles; Def of right triangles 4. $\overline{M L} \cong \overline{M N}$; Given 5. $\overline{O M} \cong \overline{O M}$; Reflexive 6. SAS
1) 2. $\angle \mathrm{JKL} \& \angle \mathrm{MLK}$ are right angles; Given 2. $\Delta \mathrm{JKL} \& \Delta \mathrm{MLK}$ are right triangles; Def of right triangles
3. $\overline{J L} \cong \overline{M K}$; Given 4. $\overline{K L} \cong \overline{K L}$; Reflexive 5. HL
11) 12. $\overline{A B} \cong \overline{D B}$; Given 2. $\overline{C B} \cong \overline{C B}$; Reflexive 3. $\overline{B C} \perp \overline{A D}$; Given 4. $\angle B C A \& \angle B C D$ are right angles; Definition of perpendicular lines 5. $\triangle B C A \& \triangle B C D$ are right triangles; Definition of right triangles 6. $\triangle A B C \cong \triangle D B C ; H L$
