4.3: Prove Triangles Congruent by SSS

Name: Key
Date:

I can prove triangles congruent using SSS Postulate.

Side-Side-Side Congruence Postulate (SSS)

If three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent.

Example:

If Side $\overline{AB} \cong \overline{RS}$, Side $\overline{BC} \cong \overline{ST}$, and Side $\overline{CA} \cong \overline{TR}$, then $\triangle ABC \cong \underline{ARST}$.

by SSS

EXAMPLE 1 – Use the SSS Congruence Postulate

Decide whether the congruence statement is true. Explain your reasoning.

Yes, true by SSS a)
$$\triangle$$
 JKL \cong \triangle MKL

IK = IK by
reflexive
property

Not enough in to b) $\triangle RST \cong \triangle TVW$

RTY WT

ST & WV Cant assume

sides are =

c) $\triangle ABC \cong \triangle FED$

AB \(\vec{FD}\)
\(\text{AD } \(\vec{FC}\)
\(\text{AD }

Reasons to prove sides are congruent in triangle proofs:

- · Givens
- · Reflexive Property
- · Definition of Midpoint

Example 2 – Use the SSS Congruence Postulate to write a proof.

a. Given: $\overline{AB} \cong \overline{CD}$, $\overline{DA} \cong \overline{CB}$

* mark diagrams

Prove: $\Delta ABC \cong \Delta CDA$

Statements	Reasons	
1. AB → CD	1. Given	
2. DA ≅ CB	2. Given	
3. ĀC ≅ ĀC	3. Reflexive Property	
AABL & DCDA	4. SSS	

b. Given: $\overline{FI} \cong \overline{HI}$

G is the midpoint of \overline{FH}

Prove: $\Delta FGJ \cong \Delta HGJ$

Statements	Reasons	
1. FJ m HJ	1. Given	
2. G is the midpoint of FH	2. GIVEN	always go together
3. FG → HG	3. Definition of midpoint	
4. J _G ≈ J _G	4. Reflexive Property	
5. AFGJ & AHG.	5. \$\$\$	

Example 3 - Congruent Triangles in the Coordinate Plane

a) Determine whether ΔPQR is congruent to the other triangles shown at the right.

Use distance formula to find the lengths of the sides:

$$PQ = 3$$
 $VW = \sqrt{10}$ $RS = 3$

$$OR = 5$$

$$PR = \sqrt{34}$$

$$QR = \underline{5} \qquad WR = \underline{\sqrt{29}} \qquad RT = \underline{5}$$

$$PR = \underline{\sqrt{34}} \qquad VR = \underline{\sqrt{41}} \qquad ST = \underline{\sqrt{34}}$$

PR = $\sqrt{(a+3)^2 + (a-5)^2} = \sqrt{(5)^2 + (-3)^2} = \sqrt{25+9} = \sqrt{34}$

WR =
$$\sqrt{(0-2)^2+(-3-2)^2}$$
 = $\sqrt{(-2)^2+(-5)^2}$ = $\sqrt{4+26}$ = $\sqrt{29}$