Geometry H 4.3: Prove Triangles Congruent by SSS Name: \_\_\_\_\_

Date: \_\_\_\_\_



I can prove triangles congruent using SSS Postulate.

| Side-Side-Side Congruence Postulate (SSS)                                  | Example:                                         |
|----------------------------------------------------------------------------|--------------------------------------------------|
| If three sides of one triangle are congruent                               | If Side $\overline{AB} \cong $ ,                 |
| to three sides of a second triangle, then the two triangles are congruent. | Side $\overline{BC} \cong $ , and $\checkmark A$ |
|                                                                            | Side $\overline{CA} \cong $ ,                    |
|                                                                            | then $\triangle ABC \cong \underline{\qquad}$    |
|                                                                            |                                                  |

## EXAMPLE 1 – Use the SSS Congruence Postulate

Decide whether the congruence statement is true. Explain your reasoning.

a)  $\triangle JKL \cong \triangle MKL$ 







Reasons to prove sides are congruent in triangle proofs:

- •
- •
- •

## Example 2 – Use the SSS Congruence Postulate to write a proof.

- a. Given:  $\overline{AB} \cong \overline{CD}, \overline{DA} \cong \overline{CB}$ 
  - **Prove:**  $\triangle ABC \cong \triangle CDA$



| Statements | Reasons |
|------------|---------|
| 1.         | 1.      |
| 2.         | 2.      |
| 3.         | 3.      |
| 4.         | 4.      |

b. Given:  $\overline{FJ} \cong \overline{HJ}$ G is the midpoint of  $\overline{FH}$ 



| Statements | Reasons |
|------------|---------|
| 1.         | 1.      |
| 2.         | 2.      |
| 3.         | 3.      |
| 4.         | 4.      |
| 5.         | 5.      |

## **Example 3 – Congruent Triangles in the Coordinate Plane**

a) Determine whether  $\Delta$ PQR is congruent to the other triangles shown at the right.

Use distance formula to find the lengths of the sides:

QR = \_\_\_\_\_ WR = \_\_\_\_\_ RT = \_\_\_\_\_

PR = \_\_\_\_\_ VR = \_\_\_\_\_ ST = \_\_\_\_\_

