- 1. Is each of the following statements true or false? Explain your reasoning.
 - a. Every equilateral triangle is acute.
 - b. A triangle can have two obtuse angles.
 - c. A triangle can have two acute exterior angles.
 - d. A triangle can have at most one right angle.
- 2. In $\triangle DEF$, $m\angle D = (12x-6)^\circ$, $m\angle E = (5x+2)^\circ$, and $m\angle F = 6x^\circ$. Classify $\triangle DEF$ by its angles.

- 3. A triangle has side lengths of 4 inches, 6 inches, and 8 inches. Classify the triangle by its side lengths.
- 4. Using the diagram below, please find the measure of all numbered angles. (NOTE: Diagram not drawn to scale)

- 5. Using the diagram below, please find the measure of the following angles:
 - a. *m*∠1
 - b. $m \angle 2$
 - c. $m \angle 3$
 - d. $m \angle 4$
 - e. *m*∠5

6. Using the diagram below, please solve for x and y.

7. In a triangle, the measure of the second angle is four times the measure of the first angle. The third angle is twenty-four less than the first angle. Find the measure of each angle and classify the triangle by its angle measures *and* by its side lengths.

8. Given $m \angle 1 = 112^{\circ}$ and $m \angle 7 = 69^{\circ}$, find the measures of the other numbered angles.

9. In the diagram below, $m\angle CAB=80^\circ$ and $m\angle CBA=60^\circ$. If $\overline{BD}\perp \overline{AC}$ and $\overline{AE}\perp \overline{BC}$, find $m\angle ACB$ and $m\angle AFB$.

10. One acute angle of a right triangle measures 37°. Find the measure of the other acute angle.

11. Use the diagrams below, please solve for x.

a.

b.

12. Using the diagram below, please find the measure of the **exterior angle**.

13. If $m\angle PST = (x+3y)^{\circ}$, $m\angle RPS = 45^{\circ}$, $m\angle PRS = 2y^{\circ}$, and $m\angle PSR = 5x^{\circ}$, find $m\angle PST$.

14. Find <u>all</u> possibilities for $m\angle 1$ in the diagram below. (NOTE: Diagram not drawn to scale)

15. Given Δ LMN is isosceles, \overline{LN} and \overline{LM} are the legs, LM = 3x – 2, LN = 2x + 1, and MN = 5x – 2. Find the value of x and find the perimeter of Δ LMN.

16. Using the diagram below, find the value of x.

17. Given that $\overline{AB} \cong \overline{BC}$, find the value of x and classify $\triangle ABC$ by its side lengths.

18. Given the diagram below, please find the value of x.

19. Given the information listed in the diagram below, $m\angle BAE = 12^{\circ}$, $m\angle ABC = 52^{\circ}$, and $m\angle BCE = 26^{\circ}$, please find the values of x and y.

21. Using the diagram below, please find perimeter of the triangle.

A triangle has the given vertices. Graph the triangle, find each side length in simplest radical form, and classify the triangle by its side lengths. Determine if the triangle is a right triangle.

22. A(-3, 3), B(2, 8), C(7, 3)

23. D(1, 1), E(4, 0) F(8, 5)

24	G(1	-31	H(2,	-6)	1/-1	-51
۷4.	Oι±,	<i>-</i> J ,	11(4,	· -O),	ι(-т,	-5

25. J(0, 0), K(6, 0), L(3, $\sqrt{27}$)

Answer Key:

- 1) a. True, each angle in an equilateral triangle is always 60°
 - b. False, if a triangle had more than one obtuse angle, the interior angle sum would be greater than 180°
 - c. False, an angle would have to have two obtuse angles in order to have two acute exterior angles
 - d. True, if a triangle had more than one right angle, the interior angle sum would be greater than 180°
- 2) x = 8, right triangle
- 3) Scalene triangle
- 4) $m \angle 1 = 104^{\circ}$, $m \angle 2 = 76^{\circ}$, $m \angle 3 = 42^{\circ}$, $m \angle 4 = 48^{\circ}$, $m \angle 5 = 49^{\circ}$
- 5) $m \angle 1 = 140^{\circ}$, $m \angle 2 = 40^{\circ}$, $m \angle 3 = 65^{\circ}$, $m \angle 4 = 75^{\circ}$, $m \angle 5 = 115^{\circ}$
- 6) x = 30, y = 60
- 7) Angles: 34° , 136° , 10° , Obtuse Scalene
- 8) $m \angle 1 = 112^{\circ}$, $m \angle 2 = 68^{\circ}$, $m \angle 3 = 43^{\circ}$, $m \angle 4 = 137^{\circ}$, $m \angle 5 = 69^{\circ}$, $m \angle 6 = 111^{\circ}$, $m \angle 7 = 69^{\circ}$
- 9) $m\angle ACB = 40^{\circ}$, $m\angle AFB = 140^{\circ}$
- 10) 53°
- **11)** a. x = 71
- b. x = 106.5
- 12) 149°
- 13) x = 15, y = 30, $m \angle PST = 105^{\circ}$
- 14) $m \angle 1 = 14^{\circ}$, OR $m \angle 1 = 124^{\circ}$
- 15) x = 3, Perimeter = 27 units
- **16)** x = 5
- 17) x = 3, Equilateral
- 18) x = 13
- 19) x = 72, y = 18
- 20) P = 36 units
- 21) P = 98 inches
- 22) Right Isosceles Triangle
- 23) Obtuse Scalene Triangle
- 24) Acute Isosceles Triangle
- 25) Equilateral Triangle