Geometry H 3.3: Proving Lines Parallel Name: ______

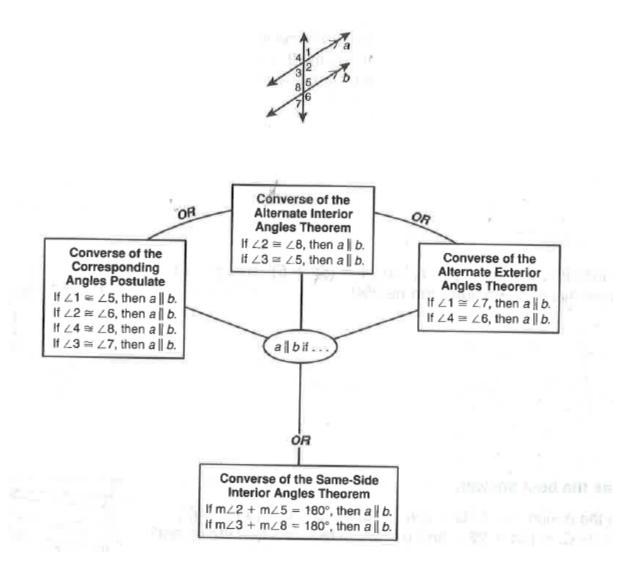
Date: ______ Period: _____

• I can prove lines are parallel.

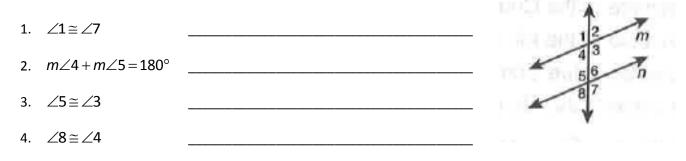
I can use the corresponding angles converse

- > I can use the alternate interior angles converse.
- I can use the alternate exterior angles converse.
- I can use the consecutive interior angles converse.

You may have noticed that the postulates and theorems that we've studied so far have been written in the form "If *p*, then *q*." The **converse** of such a statement *switches the order of the parts of the statement* and has the form "If *q*, then *p*." The **converse** of a postulate or theorem may or may not be true, just as the **converse** of a mathematical statement may or may not be true.


Mathematical Example:

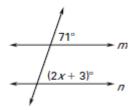
Statement	Write the converse of the Statement	Is the converse <u>always</u> true?
<i>If</i> $x = 2$, <i>then</i> $3x = 6$		
If $x = 2$ and $y = 3$, then $x + y = 5$		


The **converse** of the Corresponding Angles Postulate is accepted as **true**, and this makes it possible to prove that the **converses** of the Alternate Interior Angle Theorem, Alternate Exterior Angle Theorem, and Consecutive Interior Angle Theorem are also true.

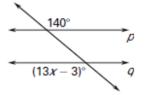
Converse	In words	Diagram
Corresponding Angles Converse	If two lines are cut by a transversal so that corresponding angles are , then the lines are	$\begin{array}{c} \overbrace{1/2}^{q} \\ \overbrace{3/4}^{q} \\ \downarrow \\ $
Alternate Interior Angles Converse	If two lines are cut by a transversal so that alternate interior angles are , then the lines are	lf, then
Alternate Exterior Angles Converse	If two lines are cut by a transversal so that alternate exterior angles are , then the lines are	If, then
Consecutive Interior Angles Converse	If two lines are cut by a transversal so that consecutive interior angles are, then the lines are	If, then

Line *a* and line **b** can be proven parallel four different ways.

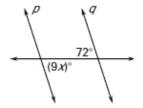
For questions 1 – 4, use the given information to explain why $m \parallel n$.

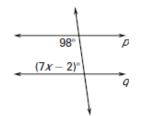


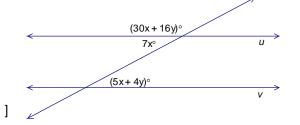
5. If $m \angle 1 = 47^{\circ}$ and $m \angle 5 = 49^{\circ}$, are the lines parallel? Explain.


6. If $m \angle 3 = 119^\circ$, what does the measure of $\angle 6$ need to be to prove $m \parallel n$?

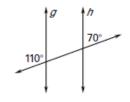
Example 1: Find value of x that makes line parallel.


a) Find the value of x that makes $m \parallel n$. Explain your reasoning.


b) Find the value of *x* that makes $p \parallel q$. Explain your reasoning.


c) Find the value of x that makes $p \parallel q$. Explain your reasoning.

d) Find the value of x that makes $p \parallel q$. Explain your reasoning.



e) Find the values of x and y that makes $u \parallel v$. Justify why $u \parallel v$ by stating the appropriate postulates or theorems that you used.

Example 2: Solve a Real- World Problem

a) Noah needs to verify that the two posts (lines g and h) he's put into the ground are parallel. He measures the angles as shown in the diagram below. Is there enough information in the diagram to conclude that $g \parallel h$? Explain.

