Geometry H

10.4: Inscribed Angles and Inscribed Polygons

Name:	Keu	
_		

Date: _____Period:_____

- I can find the measures of inscribed angles of a circle.
- I can find the angle measures of inscribed quadrilaterals,

Inscribed Angles

An **inscribed angle** is an angle whose vertex is on a circle and whose sides contain chords of the circle. In $\bigcirc G$, inscribed $\angle DEF$ intercepts \widehat{DF}

Inscribed Angle Theorem	If an angle is inscribed in a circle, then the measure of the angle equals one-half the measure of its intercepted arc.	ABC is an inscribed angle. AC is an intercepted arc. AC is an intercepted arc.
Theorem 10.8	If two inscribed angles of a circle intercept the same arc, then the angles are congruent.	$\angle ABC$ and $\angle ADC$ intercept \widehat{AC} , so $\underline{m < ABC} = \underline{m < ADC}$
Theorem 10.9	An inscribed angle subtends a semicircle if an only if the angle is a right angle.	D _c B

Example 1: Using Inscribed angles to find angle and arc measures in circles.

a) Find $m \angle LMP$ and \widehat{mMN}

b) Find $m \angle GFJ$ and $m\widehat{FH}$

Example 2: Finding measures of inscribed angles - Using Algebra

a) Find $m \angle FEG$.

= 50°

Example 3: Using congruent inscribed angles

a. Name two pairs of congruent angles in the figure.

b. Find $m \angle FJH$.

Example 4: Using Inscribed Triangles

Find AD.

$$m \le \theta = 90^{\circ}$$

(b/c intercepted arc = 180°)

 $5^{2} + 12^{2} = C^{2}$
 $169 = C^{2}$
 $C = \sqrt{169}$
 $C = 13$

Theorem 10.10

A quadrilateral can be inscribed in a circle if and only if its opposite angles are supplementary.

 $\angle A$ and $\angle C$ are supplementary.

 $\angle B$ and $\angle D$ are supplementary.

Example 5: Using Inscribed Quadrilaterals

a) Find the value of each variable.

b) Find the measure of each angle.

