Geometry H
10.4: Inscribed Angles and Inscribed Polygons

Name: \qquad
Date: \qquad Period: \qquad

- I can find the measures of inscribed angles of a circle.
- I can find the angle measures of inscribed quadrilaterals.

Inscribed Angles

An inscribed angle is an angle whose vertex is on a circle and whose sides contain
chords of the circle. In $\odot G$, inscribed $\angle D E F$ intercepts $D F$

Inscribed Angle Theorem	If an angle is inscribed in a circle, then the measure of the angle equals onehalf the measure of its intercepted arc.	$\angle A B C$ is an $\overline{A C}$ is an inscribed angle. intercepted arc. $m \angle A B C=$ \qquad
Theorem 10.8	If two inscribed angles of a circle intercept the same arc, then the angles are congruent.	$\angle A B C$ and $\angle A D C$ intercept $\widehat{A C}$, so \qquad
Theorem 10.9	An inscribed angle subtends a semicircle if an only if the angle is a right angle.	

Example 1: Using Inscribed angles to find angle and arc measures in circles.
a) Find $m \angle L M P$ and $m \widehat{M N}$

b) Find $m \angle G F J$ and $m \widehat{F H}$

Example 2: Finding measures of inscribed angles - Using Algebra
a) Find $m \angle E F G$.

b. Find x.

Example 3: Using congruent inscribed angles

a. Name two pairs of congruent angles in the figure.

b. Find $m \angle F J H$.

Example 4: Using Inscribed Triangles

Find AD.

| Theorem 10.10 | A quadrilateral can be inscribed in a
 circle if and only if its opposite
 angles are supplementary. |
| :---: | :---: | :---: | :---: |

Example 5: Using Inscribed Quadrilaterals

a) Find the value of each variable.

b) Find the measure of each angle.

