- I can use properties of tangents to verify a tangent to a circle. - I can use properties of tangents to find segment lengths in circles. | Theorem | Example | |---|---| | In a plane, a line is tangent to a circle if and only if the line is perpendicular to a radius of the circle at its endpoint on the circle. | If line m is tangent to ⊙Q, then M 1 QP If m 1 QP, then line m Is tangent to ⊙Q | **Example 1:** Verify a tangent to a circle. In the diagram, \overline{BC} is a radius of $\odot C$. Determine whether \overline{AB} is tangent to $\odot C$. Explain your reasoning. Yes, since BC is perpendicular to AB, AB is tangent to OC $$C^{2}_{-}0^{2} + b^{2}$$ $7^{2}_{-}3^{2} + 6^{2}$ $49 \ge 45$ or disprove $C^2 = a^2 + b^2$ since this Δ is obtuse, BC is not Δ to ABangle by using $T^2 = 3^2 + b^2$ so \overline{AB} is not tangent to \overline{OC} $$(^{2}_{-}\alpha^{2} + b^{2}_{-})^{2}$$ $5^{2}_{-}3^{2} + 4^{2}_{-}$ $26 \equiv 25$ Since this A is right, BC LAB so AB is tangent to Oc Example 2: Find length of radius of circle. The Know there is a right angle a heady a) In the diagram \overline{AB} is tangent to $\bigcirc C$ at point B. Find the radius r of $\bigcirc C$. b) You are standing 14 feet from a circular water tower. The distance from you to the point of tangency on the tower is 28 feet. What is the radius of the tower? $$r^{2}+28^{2}=(r+14)^{2}$$ $r^{2}+784=(r+14)(r+14)$ $r^{2}+784=r^{2}+28r+196$ $r^{2}-r^{2}$ $r^{2}+784=28r+196$ $r^{2}+784=28r+196$ ## **Explore:** From a point in a circle's exterior, you can draw exactly two different tangents. Use the diagram below to complete the following: - Draw the two tangents \overline{EP} and \overline{EQ} to $\bigcirc D$. - Connect \overline{ED} , \overline{DQ} , and \overline{DP} . - What types of segments are \overline{DQ} and \overline{DP} ? What can we conclude about \overline{DQ} and \overline{DP} . - Is $\triangle DPE \cong \triangle DQE$? Explain. ## **Theorem** If two segments are tangent to a circle from the same external point, then the segments are congruent If \overline{SR} and \overline{ST} are tangent to $\bigcirc P$, then SR = ST ## **Example 3:** Find lengths of tangent segments. a) \overline{JK} is tangent to $\odot L$ at K and \overline{JM} is tangent to $\odot L$ at M. Find the value of x. X=6 b) $\overline{IH}, \overline{IK}$, and \overline{IL} are tangent to $\bigcirc A$. What is IK? $$y^{2}-10 = 4y+2$$ $y^{2}-4y-12=0$ $(y-6)(y+2)=0$ $y=6$ $y \neq \lambda$ $4(-2)+2$ = -6 γ cant have $q=0$ lengths $$y^2 - 10$$ $$A \circ U$$ $$A$$