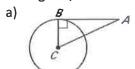
- I can use properties of tangents to verify a tangent to a circle.
- I can use properties of tangents to find segment lengths in circles.

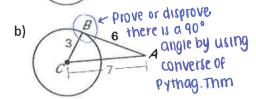
Theorem	Example
In a plane, a line is tangent to a circle if and only if the line is perpendicular to a radius of the circle at its endpoint on the circle.	 If line m is tangent to ⊙Q, then M 1 QP If m 1 QP, then line m Is tangent to ⊙Q

Example 1: Verify a tangent to a circle.

In the diagram, \overline{BC} is a radius of $\odot C$. Determine whether \overline{AB} is tangent to $\odot C$. Explain your reasoning.

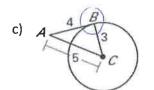


Yes, since BC is perpendicular to AB, AB is tangent to OC



$$C^{2}_{-}0^{2} + b^{2}$$
 $7^{2}_{-}3^{2} + 6^{2}$
 $49 \ge 45$

or disprove $C^2 = a^2 + b^2$ since this Δ is obtuse, BC is not Δ to ABangle by using $T^2 = 3^2 + b^2$ so \overline{AB} is not tangent to \overline{OC}



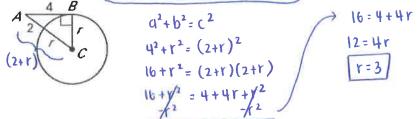
$$(^{2}_{-}\alpha^{2} + b^{2}_{-})^{2}$$

 $5^{2}_{-}3^{2} + 4^{2}_{-}$
 $26 \equiv 25$

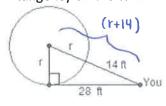
Since this A is right, BC LAB so AB is tangent to Oc

Example 2: Find length of radius of circle. The Know there is a right angle a heady

a) In the diagram \overline{AB} is tangent to $\bigcirc C$ at point B. Find the radius r of $\bigcirc C$.



b) You are standing 14 feet from a circular water tower. The distance from you to the point of tangency on the tower is 28 feet. What is the radius of the tower?

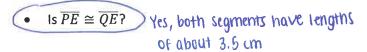


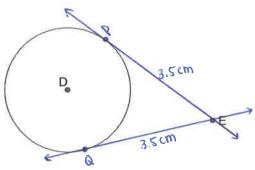
$$r^{2}+28^{2}=(r+14)^{2}$$
 $r^{2}+784=(r+14)(r+14)$
 $r^{2}+784=r^{2}+28r+196$
 $r^{2}-r^{2}$
 $r^{2}+784=28r+196$
 $r^{2}+784=28r+196$

Explore:

From a point in a circle's exterior, you can draw exactly two different tangents. Use the diagram below to complete the following:

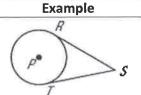
- Draw the two tangents \overline{EP} and \overline{EQ} to $\bigcirc D$.
- Connect \overline{ED} , \overline{DQ} , and \overline{DP} .
- What types of segments are \overline{DQ} and \overline{DP} ? What can we conclude about \overline{DQ} and \overline{DP} .
- Is $\triangle DPE \cong \triangle DQE$? Explain.





Theorem

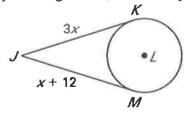
If two segments are tangent to a circle from the same external point, then the segments are congruent



If \overline{SR} and \overline{ST} are tangent to $\bigcirc P$, then SR = ST

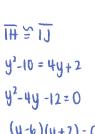
Example 3: Find lengths of tangent segments.

a) \overline{JK} is tangent to $\odot L$ at K and \overline{JM} is tangent to $\odot L$ at M. Find the value of x.



X=6

b) $\overline{IH}, \overline{IK}$, and \overline{IL} are tangent to $\bigcirc A$. What is IK?



$$y^{2}-10 = 4y+2$$

 $y^{2}-4y-12=0$
 $(y-6)(y+2)=0$
 $y=6$ $y \neq \lambda$
 $4(-2)+2$
= -6
 γ
cant have
 $q=0$ lengths

$$y^2 - 10$$

$$A \circ U$$

$$A$$