

- I can name, measure, and classify angles.
- I can use the Angle Addition Postulate to find measure of angles.
- I can use angle postulates to identify congruent angles.

An *angle* is a figure formed by two different rays that have the same initial point. The two rays are the *sides* of the angle. The initial point is called the *vertex* of the angle.

Example 1: Naming Angles

Name the three angles in the diagram below.

Example 2: Classifying and Measuring Angles

Angles can be classified as acute, right, obtuse, or straight.

	1	1	
A	8 1 ,	c ·	<
Acute Angle	Right Angle	Obtuse Angle	Straight Angle
0 ° <m∠a <90°<="" td=""><td>m∠B=<u>90°</u></td><td>90° <m∠c 180°<="" <="" td=""><td>m∠D=<u>180</u>°</td></m∠c></td></m∠a>	m∠B= <u>90°</u>	90° <m∠c 180°<="" <="" td=""><td>m∠D=<u>180</u>°</td></m∠c>	m∠D= <u>180</u> °

To measure an angle, we use a protractor to approximate its value using units called degrees.

Let's find the measure of some of the angles in the diagram above.

$$\frac{30-0}{m\angle AGB} = \frac{30^{\circ}}{30^{\circ}}$$
 $\frac{142-74}{m\angle DGE} = \frac{68^{\circ}}{68^{\circ}}$ $\frac{74-66}{m\angle CGD} = \frac{14^{\circ}}{m}$ $\frac{142-0}{m\angle AGE} = \frac{142^{\circ}}{m}$

measure of angle AGB

Example 3: Angle Addition Postulate

a. If $m\angle RSP = 20^{\circ}$, and $m\angle PST = 32^{\circ}$, find $m\angle RST$.

b. If $m\angle RST = 86^{\circ}$, and $m\angle PST = 32^{\circ}$, find $m\angle RSP$.

c. If $m\angle RST = 72^{\circ}$, $m\angle PST = (2x+4)^{\circ}$, and $m\angle RSP = (3x-2)^{\circ}$, find the value of x and the measures of the angles.

$$m \leq PST = 2(14) + 4$$

 $m \leq PST = 32^{\circ}$
 $m \leq RSP = 3(14) - 2$
 $m \leq PSP = 40^{\circ}$

Example 4: Adjacent Angles

Adjacent angles are angles that have a common Vertex and share a common Side but no

common interior points.

CABL and CCBD are adjacent angles

- Share vertex B

- share side BC

Example 5: Congruent Angles

Congruent angles are angles that have the same measure.

Angle measures are equal.

Angles are congruent.

"is equal to"

"is congruent to"

arcs mean conquent

a. If $\angle CAB \cong \angle FDE$, $m \angle CAB = (2x+3)^o$, and $m \angle FDE = (3x-17)^o$, solve for x and find the measure of each angle.

$$2x+3 = 3x-17$$

Example 6: Double Angle Measure

a. In the diagram, \overrightarrow{JH} bisects $\angle IJG$, and suppose $m\angle GJH = 47^{\circ}$. Find $m \angle IJG$.

b. In the diagram, \overrightarrow{JH} bisects $\angle IJG$, and suppose $m\angle GJI = 92^{\circ}$. Find $m\angle HJI$.

