Unit 4

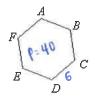
50. If $\frac{3}{x-4} = \frac{x}{7}$, find the possible values of x.

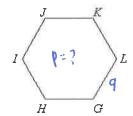
$$21 = x^2 - 4x$$

 $0 = x^2 - 4x - 21$

51. Find the geometric mean of 15 and 9 in simplest radical form.

52. The measures of the angles of a triangle are in the extended ratio of 5:9:10. Find the measures of the angles of the triangle.


53. The area of a rectangle is 294 yards². The length and width are in the ratio of 3 : 2. Please find the length, width, and perimeter of the rectangle.

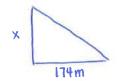

A=
$$LW$$

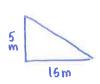
294 = $(3x)(2x)$
294 = $6x^2$
 $49 = x^2 \Rightarrow x = 7$

54. The side lengths in $\triangle XYZ$ are related in an extended ratio of XY:YZ:XZ : 7:10:14. Please solve for b and c.

$$\frac{b-7}{b+20} = \frac{7}{10}$$

55. The hexagons below, ABCDEF and JKLGHI, are similar. If CD = 6, LG = 9, and the perimeter of ABCDEF is 40, what is the perimeter of JKLGHI?

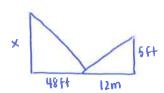



$$\frac{ABC}{JKL} = \frac{6}{9} = \frac{40}{X}$$

$$6X = 360$$

$$X = 60$$

56. A building casts a shadow 174 meters long. At the same time, a pole 5 meters high casts a shadow 15 meters long. What is the height of the building?

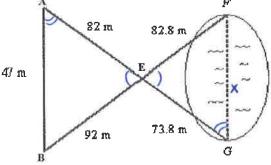


$$\frac{X}{5} = \frac{114}{15}$$
 $15x = 870 \Rightarrow X = 58$

57. Michelle wanted to measure the height of her school's flagpole. She placed a mirror on the ground 48 feet from the flagpole, then walked backwards until she was able to see the top of the pole in the mirror. Her eyes were 5 feet above the ground and she was 12 feet from the mirror. Please find the height of the flagpole.

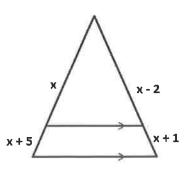
$$\frac{X}{5} = \frac{48}{12}$$

$$X = 20$$


c.

58. Campsites F and G are on opposite sides of a lake. A survey crew made the measurements shown on the diagram. Assuming that the segments formed by \overline{AB} and \overline{FG} are parallel, please explain why the triangles are similar and find the distance between

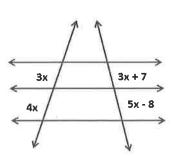
the two campsites? Note: The diagram is not to scale.


DAEB ~ DGEF by AA ~

$$\frac{41}{x} = \frac{8a}{13.8}$$
 \Rightarrow $8a x = 3468.6$ $x = 4a.3 m$

59. Please use the diagrams below to solve for x.

a.


$$\frac{X}{X+5} = \frac{X-a}{X+1} \Rightarrow X^{2} + X = X^{2} - 2X + 6X - 10$$

$$X = 3X - 10$$

$$-2X = -10$$

$$X = 5$$

b.

$$\frac{3x}{4x} = \frac{3x+7}{5x-8} \Rightarrow 12x^{4} + 28x = 15x^{2} - 24x$$

$$28x = 3x^{2} - 24x$$

$$0 = 3x^{4} - 52x$$

2x + 3

$$\frac{3x}{4x} = \frac{3x+7}{5x-8} \Rightarrow 10x^{2} + 38x = 15x^{2} - 24x$$

$$\frac{x}{x-a} = \frac{3x+3}{x+4} \Rightarrow x^{2} + 4x = 0x^{2} + 4x + 3x - 6$$

$$0 = x^{2} - 6x - 6$$

$$0 = x(3x-6x)$$

$$0 = x(3x-6x)$$

$$x = 6(x-6)(x+1)$$

$$x = 6(x-6)$$

60. In $\triangle RST$, RS = 10, RT = 15, and $m\angle R = 32^{\circ}$. In $\triangle UVW$, UV = 12, UW = 18, and $m\angle U = 32^{\circ}$. Are these triangles similar? If so, explain why and write a similarity statement.

61. Is a dilation by a scale factor of $\frac{2}{3}$ an enlargement or a reduction? How can you tell?

62. Is a dilation by a scale factor of 5 an enlargement or a reduction? How can you tell?

63. What are the coordinates of the polygon A(1,5) B(3,3) C(2, -6) D(-4, -2) after it is dilated by a scale factor of 4?

$$A(1,5) \rightarrow A'(4,20)$$

$$C(2,-6) \rightarrow C^{1}(8,-24)$$

$$B(3,3) \rightarrow B'(12,12)$$
 $D(-4,-2) \rightarrow D'(-46,-8)$

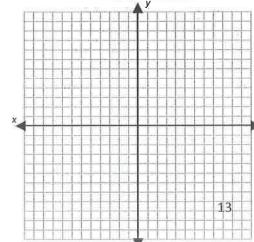
64. What are the coordinates of the polygon A(-4,8) B(2,4) C(0,2) D(-4,6) after it is dilated by a scale factor of $\frac{1}{2}$?

$$A(-4,8) \rightarrow A'(-2,4)$$
 $0(-4,6) \rightarrow 0'(-2,3)$

$$B(2,4) \rightarrow B'(1,2)$$

$$C(0,2) \rightarrow C'(0,1)$$

65. \triangle DEF has coordinates D(0, 5), E(4, 1) and F(2, 1). Please dilate the triangle using center (-1, 2) and a scale factor of 2.

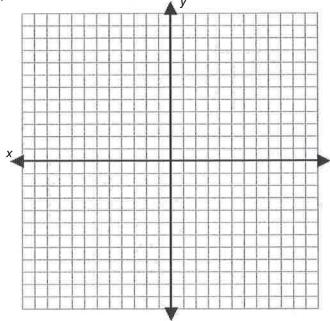

From center (-1,2) to D(0,5): (x+1, y+3) x 2

From center (-1,2) to E (4,1): (x+5, y-1) x2

From center (-1,2) to F(2,1): (x+3,y-1) x2

$$(x+6,y-2)$$

from (-1,2): (-1+6, 2-2) => F'(6,0)

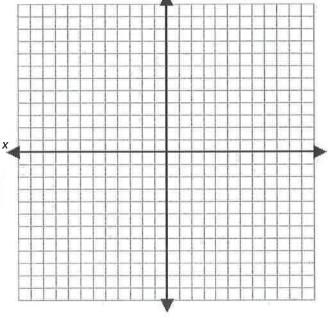

66. Find the coordinates of the dilation image of ΔGHJ centered at the point (2, 4) with a scale factor of ½ given coordinates G(-8, 2), H(-2, 2), and J(-4, -4).

From (enter (2,4) to G(-8,2):
$$(x-10, y-2) \times 1/2$$

 $(x-6, y-1)$
From (2,4): $(2-6, 4-1) \gg G'(-3,3)$

From center
$$(2,4)$$
 to $H(-2,2): (x-4,y-2) \times 1/2$
 $(x-2,y-1)$
From $(2,4): (2-2,4-1) \Rightarrow H'(0,3)$

From center (2,4) to
$$J(4,-4): (x-6,y-8) \times 1/2$$


$$(x-3,y-4)$$
From (2,4): $(2-3,4-4) \Rightarrow \boxed{J'(-1,0)}$

67. Find the coordinates of the dilation image of \overline{ST} centered at point (-3, 4) with a scale factor of 2 given coordinates S(1, 3) and T(-1, 4).

From center
$$(-3,4)$$
 to $S(1,3)$: $(x+4, y-1) \times 2$
 $(x+8, y-2)$
From $(-3,4)$: $(-3+8, 4-2)$ \Rightarrow $S'(5,2)$

From center (-3,4) to
$$T(-1,4)$$
: $(x+2,y+0)\times 2$ $(x+4,y+0)$

