Algebra Skills Review

Perform the indicated operation.

1.
$$\frac{\frac{1}{5}}{\frac{12}{7}} = \frac{1}{5} \cdot \frac{1}{12} = \boxed{\frac{1}{60}}$$

3.
$$\frac{2}{21} - \frac{1}{2} = \frac{4}{42} = \frac{21}{42} = \begin{bmatrix} -\frac{17}{42} \end{bmatrix}$$

2.
$$\frac{\frac{7}{9}}{\frac{12}{4}} = \frac{7}{9} \cdot \frac{4}{12} = \frac{28}{108} = \frac{14}{64} = \frac{7}{27}$$

4.
$$\frac{1}{2} + \frac{3}{8} \Rightarrow \frac{4}{8} + \frac{3}{8} = \boxed{\frac{7}{8}}$$

Solve for x and y.

5.
$$\begin{cases} (2x+y=5) & \text{bx+3y=16} \\ -6x-3y=-15 \end{cases}$$

Infinitely many
Solutions

Factor each polynomial completely.

6.
$$3b^2 - 6b$$

 $3b(b-2)$

8.
$$2x^2 + 9x + 4$$

 $2x^2 + 8x + 1x + 4$
 $2x(x+4) + 1(x+4)$
 $(x+4)(2x+1)$

Simplify each radical completely.

10.
$$\sqrt{192}$$
= $\sqrt{64}\sqrt{3}$
= $\sqrt{8\sqrt{3}}$

$$6.7(-2x+5y=26)$$

$$7(-2x+5y=26)$$

$$1x+10=-6$$

$$1x=-21$$

$$1+x+8y=-10$$

$$-14x+36y=182$$

$$1+3y=173$$

$$y=4$$

7.
$$2b^{2}+18b+16=0$$

 $2(b^{2}+9b+8)=0$
 $b^{2}+9b+8=0$
 $(b+8)(b+1)$
9. $5x^{2}-11x-12=0$
 $5x^{2}-15x+4x-12=0$
 $5x(x-3)+4(x-3)=0$
 $(5x+4)(x-3)$

$$M = \left(\frac{-8+6}{2}, \frac{9+3}{2}\right) = \left(\frac{-3}{3}, 6\right) = \left(\frac{-1.6}{6}, 6\right)$$

$$\times_{2} \forall_{2}$$

13. \overline{CD} has endpoint C(5,3) and D(-8,9). To the nearest tenth, what is the distance, in units, from point C to the midpoint of the segment?

CM =
$$\sqrt{(-6.5)^2 + (6-3)^2} = \sqrt{(-6.5)^2 + (3)^2} = \sqrt{43.35+9} = \sqrt{51.25} = 7.2 \text{ units}$$

14. \overline{ET} has endpoint E(5,7) and midpoint M (2, -6). Find the coordinates for endpoint T.

$$\frac{X_1 + X_2}{2} = M \implies \frac{5 + X_2}{2} = \frac{2}{1} \implies 4 = 5 + X_2 \implies X_2 = -1$$

$$\frac{y_1 + y_2}{2} = M \implies \frac{1 + y_2}{2} = \frac{-b}{1} \implies -12 = 1 + y_2 \implies y_2 = -19$$

$$\frac{y_1 + y_2}{2} = M \Rightarrow \frac{1 + y_2}{2} = \frac{-b}{1} \Rightarrow -12 = 1 + y_2 \Rightarrow y_2 = -19$$

15. \overrightarrow{BD} bisects $\angle ABC$. Find the value of x and m $\angle ABC$.

$$0 = (x-8)(x+5)$$

 $x=8$ $x \neq -5$

16. If the $m\angle ABC = 88^{\circ}$ then, solve for x.

17. Point M is between L and N on \overline{LN} . Use the given information to write an equation in terms of x. Solve the equation. Then find LM and MN. $LM = x^2$, MN = x and LN = 12.

18. The measure of an angle is 28° less than the measure of its complement. Find the measure of the angle and the measure of its complement.

19. The measure of an angle is 12 less than 3 times the measure of its supplement. Find the measure of the angle and the measure of its supplement.

20. Solve for x and y.

22. Given that $\angle CDE$ is a straight angle, please solve for x and find $m\angle CDF$ and $m\angle FDE$.

23. Using the diagram on the right, please give two different examples, using correct notation, for each of the following:

Figure	Example 1	Example 2	
Segment	AC, AB, BD	CA, BA, DB	i A
Ray	AC, AB, DB	CA, BA	
Line	m, n, AC, AB	CA, BA	C.