\qquad

Algebra Skills Review

Perform the indicated operation.

1. $\frac{\frac{1}{5}}{\frac{12}{7}}$
2. $\frac{\frac{7}{9}}{\frac{12}{4}}$
3. $\frac{2}{21}-\frac{1}{2}$
4. $\frac{1}{2}+\frac{3}{8}$

Solve for x and y.
5. $\left\{\begin{array}{l}2 x+y=5 \\ -6 x-3 y=-15\end{array}\right.$
6. $\left\{\begin{array}{l}7 x+4 y=-5 \\ -2 x+5 y=26\end{array}\right.$

Factor each polynomial completely.
7. $3 b^{2}-6 b$
8. $2 b^{2}+18 b+16$
9. $2 x^{2}+9 x+4$
10. $5 x^{2}-11 x-12$

Simplify each radical completely.
11. $\sqrt{192}$
12. $\sqrt{48}$
13. $\sqrt{180}$

Unit 1

14. $\overline{C D}$ has endpoint $\mathrm{C}(5,3)$ and $\mathrm{D}(-8,9)$. To the nearest tenth, what is the distance, in units, from point C to the midpoint of the segment?
15. $\overline{E T}$ has endpoint $\mathrm{E}(5,7)$ and midpoint $\mathrm{M}(2,-6)$. Find the coordinates for endpoint T .
16. $\overline{B D}$ bisects $\angle A B C$. Find the value of x and $\mathrm{m} \angle A B C$.

17. If the $m \angle A B C=88^{\circ}$ then, solve for x .

18. Point M is between L and N on $\overline{L N}$. Use the given information to write an equation in terms of x. Solve the equation. Then find LM and $\mathrm{MN} . \mathrm{LM}=x^{2}, \mathrm{MN}=x$ and $\mathrm{LN}=12$.
19. The measure of an angle is 28° less than the measure of its complement. Find the measure of the angle and the measure of its complement.
20. The measure of an angle is 12 less than 3 times the measure of its supplement. Find the measure of the angle and the measure of its supplement.
21. Solve for x and y.

22. Solve for x and y.

23. Given that $\angle C D E$ is a straight angle, please solve for x and find $m \angle C D F$ and $m \angle F D E$.

24. Using the diagram on the right, please give two different examples, using correct notation, for each of the following:

Figure	Example 1	Example 2
Segment		
Ray		
Line		

Unit 2

25. In this drawing, line p is parallel to line j and line t is perpendicular to $\overline{A B}$. What is the measure of $\angle B A C$?

26. Alejandra is playing pool. The path of the ball is shown in the diagram below.

What is the measure of $\angle 1$?
(F) 52°
(G) 76°
(H) 104°
(1) 128°
27. Do the equations of the following lines make them parallel, perpendicular, or neither?
a. $I: y=\frac{1}{3} x-2 \quad h: 6 y=2 x+12$
b. $q: 4 x-2 y=6$
$w: 2 x+4 y=6$
28. Write an equation of a line which passes through $P(-2,5)$ and is perpendicular to the line $y=3 x-7$.
29. Given $I \| m$, find the values of x. Be sure to check for extraneous solutions. Diagram is not drawn to scale.

a) $m \angle 3=\left(x^{2}+112\right)^{\circ}, m \angle 8=(16 x+131)^{\circ}$
b) $m \angle 1=\left(x^{2}-7 x\right)^{\circ}, m \angle 7=(-x+7)^{\circ}$
30. Given $p \| t, m \angle 1=(12 x-4 y)^{\circ}, m \angle 8=(x-4 y)^{\circ}$, and $m \angle 5=(15 x+8 y)^{\circ}$, find the values of x and y, and the measure of each angle.

31. Find the value of x so that $n \| m$. State the theorem or postulate that justifies your solution.

32. What values of x and y would make lines a and b parallel?

33. Given: $m \angle L N F=(3 x-15)^{\circ}, m \angle E F N=(2 x+10)^{\circ}, \overleftrightarrow{L N} \| \overleftrightarrow{E F}$. Please prove: $x=37$

Statements	Reasons		
$\text { 1. } \begin{aligned} & m \angle L N F=(3 x-15)^{\circ} \\ & m \angle E F N=(2 x+10)^{\circ} \\ & \overleftrightarrow{L N} \\| \overleftrightarrow{E F} \end{aligned}$	1.		
2.	2.		
3.	3.		
4.	4.		
5.	5.		

34. Given: $\angle 1 \cong \angle 2, \angle 1 \cong \angle 4$. Please prove $x \| y$.

Statements	Reasons	
1.	1.	
2.	3.	
3.	4.	
6.	6.	
6.		

35. Please solve for x, y, and z.

Unit 3

36. In $\triangle A B C, m \angle A=(2 x-5)^{\circ}, m \angle B=(x-1)^{\circ}$, and $m \angle C=(x+2)^{\circ}$. Classify the triangle by its angles.
37. $\triangle \mathrm{ARM}, \triangle \mathrm{MAX}$, and $\triangle \mathrm{XFM}$ are all isosceles triangles. If $m \angle F X A=96^{\circ}$, what is $m \angle F M R$?

38. a. Find the $m \angle A C D$

b. Find all possible measures of $\angle D B C$.

39. Find the value of x

40. Find the values of x and y.

41. How are the interior angle of a triangle and its adjacent exterior angle related?
a. They are complementary angles
b. They are supplementary angles
c. They are congruent angles
d. They are vertical angles
42. Classify triangle $X Y Z$ according to its angle measures and side lengths.

(F) acute, equilateral
(G) acute, isosceles
(H) obtuse, scalene
(J) obtuse, isosceles
43. Given : $\overline{A B} \perp \overline{B C}, \overline{B D}$ bisects $\angle A B C, m \angle A B D=(x+5 y)^{\circ}, m \angle D B C=(2 x+2 y+3)^{\circ}$.

Find the values of x and y.

44. Given: $\overline{D A} \| \overline{Y N} ; \overline{D A} \cong \overline{Y N}$

Prove: $\angle N D Y \cong \angle D N A$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.

45. Use the given information to write a proof.

Prove : $\overline{D B} \cong \overline{C B}$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

46. Given: $\overline{G H} \cong \overline{K J}, \overline{K G} \perp \overline{G H}$ and $\overline{K J} \perp \overline{J H}$ Prove : $\Delta \mathrm{GHK} \cong \Delta \mathrm{JKH}$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

47. Which of the following methods is NOT a method for proving triangle congruence?
a. SSS
b. SAS
c. AAS
d. SSA
48. Using the given information, please solve for the value of x and find the perimeter of the triangle.

49. Please find the values of x and y.

50. Please find the values of y and z.

Unit 4

51. If $\frac{3}{x-4}=\frac{x}{7}$, find the possible values of x.
52. Find the geometric mean of 15 and 9 in simplest radical form.
53. The measures of the angles of a triangle are in the extended ratio of 5:9:10. Find the measures of the angles of the triangle.
54. The area of a rectangle is 294 yards 2. The length and width are in the ratio of $3: 2$. Please find the length, width, and perimeter of the rectangle.
55. The side lengths in $\triangle X Y Z$ are related in an extended ratio of $X Y: Y Z: X Z: 7: 10: 14$. Please solve for b and c .

56. The hexagons below, ABCDEF and JKLGHI, are similar. If $C D=6, L G=9$, and the perimeter of ABCDEF is 40 , what is the perimeter of JKLGHI?

57. A building casts a shadow 174 meters long. At the same time, a pole 5 meters high casts a shadow 15 meters long. What is the height of the building?
58. Michelle wanted to measure the height of her school's flagpole. She placed a mirror on the ground 48 feet from the flagpole, then walked backwards until she was able to see the top of the pole in the mirror. Her eyes were 5 feet above the ground and she was 12 feet from the mirror. Please find the height of the flagpole.
59. Campsites F and G are on opposite sides of a lake. A survey crew made the measurements shown on the diagram. Assuming that the segments formed by $\overline{A B}$ and $\overline{F G}$ are parallel, please explain why the triangles are similar and find the distance between the two campsites?
Note: The diagram is not to scale.

60. Please use the diagrams below to solve for x.
a.

b.

c.

61. In $\triangle R S T, \mathrm{RS}=10, \mathrm{RT}=15$, and $m \angle R=32^{\circ}$. In $\triangle U V W, \mathrm{UV}=12, \mathrm{UW}=18$, and $m \angle U=32^{\circ}$. Are these triangles similar? If so, explain why and write a similarity statement.
62. Is a dilation by a scale factor of $\frac{2}{3}$ an enlargement or a reduction? How can you tell?
63. Is a dilation by a scale factor of 5 an enlargement or a reduction? How can you tell?
64. What are the coordinates of the polygon $A(1,5) B(3,3) C(2,-6) D(-4,-2)$ after it is dilated by a scale factor of 4 ?
65. What are the coordinates of the polygon $A(-4,8) B(2,4) C(0,2) D(-4,6)$ after it is dilated by a scale factor of $\frac{1}{2}$?
66. \triangle DEF has coordinates $\mathrm{D}(0,5), \mathrm{E}(4,1)$ and $\mathrm{F}(2,1)$. Please dilate the triangle using center $(-1,2)$ and a scale factor of 2.

67. Find the coordinates of the dilation image of $\Delta G H J$ centered at the point $(2,4)$ with a scale factor of $1 / 2$ given coordinates $\mathrm{G}(-8,2), \mathrm{H}(-2,2)$, and $\mathrm{J}(-4,-4)$.

68. Find the coordinates of the dilation image of $\overline{S T}$ centered at point $(-3,4)$ with a scale factor of 2 given coordinates $\mathrm{S}(1,3)$ and $\mathrm{T}(-1,4)$.

