Geometry H Lesson 6.6: Use Proportionality Theorems Name: ______ Date: ______ Period: _____

•

I can use proportions with a triangle or with parallel lines.

Triangle Proportionality Theorem	Example
If a line parallel to one side of a triangle intersects the other two sides, then it divides those sides proportionally.	$\overline{XY} \parallel \overline{AC} , \text{ so } =$
Converse of the Triangle Proportionality Theorem	Example
If a line divides two sides of a triangle proportionally, then it is parallel to the third side.	$\frac{3}{1} = \frac{6}{2}, \text{ so } \underline{\qquad} \parallel \underline{\qquad}$

- ✓ We can use the Triangle Proportionality Theorem to find lengths of segments in triangles.
 - A building height is 30 ft. A man is standing on the building with a height of h ft. The shadow of the building is 40 ft and the shadow of the man is 10 ft. Find the height of the man as shown in the figure.
 - Are the triangles similar? Explain.
 - > Can we determine that $\overline{AE} \parallel \overline{BD}$? Explain.
 - ➢ Find the height of the man.

✓ We can use the Triangle Proportionality Theorem to determine if lines are parallel.

2) A surveyor proposes that a walkway be added to a park so that it is parallel to one side of the park (\overline{TU}). He draws up the following proposal for the location of the walkway (\overline{WX}). Will the two walkways be parallel? Explain.

✓ We can use the Two Transversal Proportionality Theorem to find lengths of segments.

Triangle Angle Bisector Theorem	Example
If a ray bisects an angle of a triangle, then it divides the opposite side into segments whose lengths are proportional to the lengths of the other two sides.	40 Y 9 24 C
	If \overline{AY} bisects $\angle BAC$, then $\frac{BY}{YC} =$

- ✓ We can use the Triangle Angle Bisector Theorem to find segment lengths.
 - 4) Find the lengths of *LP* and *LM*.

Geometry H

Homework 6.6: Triangle Proportionality Theorems

Name:	
Date: _	Period:

Use the figure to complete the proportion.

Determine whether the given information implies $\overline{BC} \parallel \overline{DE}$. *Explain*.

Determine a value of the variable so that $\overline{BC} \parallel \overline{DE}$.

Determine the length of each segment.

13. AG

14. FC

15. ED

16. AE

Find the value of the variable.

ANSWER KEY

1. AG **2.** DE **3.** EG **4.** BG **5.** CG **6.** DC **7.** no; $\frac{7}{2} \neq \frac{8}{3}$ **8.** yes; $\frac{6}{9} = \frac{2}{3} = \frac{4}{6}$ **9.** yes; $\frac{3}{4} = \frac{3\frac{3}{4}}{5}$ **10.** 10 **11.** 20 **12.** 10 **13.** $2\frac{2}{3}$ **14.** 7.5 **15.** 11.25 **16.** 10 **17.** 11.2 **18.** 12.5 **19.** 4.5 **20.** 22.1 in.

x + 6

X