Geometry H 3.4 Comparing Slopes Notes

eriod :

Comparing slopes:

• When two lines intersect in a coordinate plane, the steeper line has the slope with the larger absolute value.

Example 1: If line 1 has a slope of 3/5 and line 2 has a slope of -2/3, line 2 is steeper because $\left|-\frac{2}{2}\right| > \left|\frac{3}{2}\right|$

TRY THESE!

Tell which line through the given points is steeper. You will need to find the slope of each line first!

1. Line 1 : (-2,3), (3,5)	2. Line 3 : (-2, -1), (1, -2)
Line 2 : (3,1), (6,5)	Line 4 : $(-5, -3), (-1, -4)$

• You can also compare slopes to tell whether two or more lines are parallel or perpendicular.

Deciding Whether Lines are Parallel, Perpendicular, or Neither

Example 2: Find the slope of each line. Which lines are parallel?

a. Find the slope of k_1 through (-2, 4) and (-3, 0):

$$m_1 = \frac{0-4}{-3-(-2)} = \frac{-4}{-4} = 4$$

b. Find the slope of k_2 through (4,5) and (3,1):

$$m_2 = \frac{1-5}{3-4} = \frac{-4}{-1} = 4$$

c. Find the slope of k_3 through (6,3) and (5,-2):

$$m_3 = \frac{-2-3}{5-6} = \frac{-5}{-1} = 5$$

 \rightarrow Compare the slopes. Because k_1 and k_2 have the same slope, they are parallel. The slope of k_3 is different so k_3 is not parallel to the other lines.

TRY THESE!

Tell whether the lines through the given points are *parallel, perpendicular,* or *neither*. You will need to find the slopes of each line first!

3. Line $1: (1,0), (7,4)$	4. Line 3 : (-3,1), (-7,-2)	5. Line 5 : (-9,3), (-5,7)
Line 2 : $(7,0)$, $(3,6)$	Line 4 : $(2, -1)$, $(8, 4)$	Line 6 : $(-11, 6)$, $(-7, 2)$

Answers to Try These!				
1. Line 2	2. Line 3	3. Perpendicular, because $\left(\frac{2}{3}\right)\left(-\frac{3}{2}\right) = -1$		
4. Neither	5. Perpei	ndicular, because $(1)(-1) = -1$		