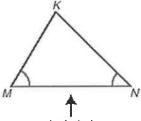
4.5 Notes - ASA and AAS

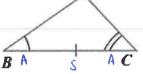
Name: _	Key	
	· ·	


Date: _____ Period: __

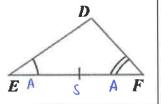
- > I can prove triangles congruent using ASA.
- > I can prove triangle congruent using AAS.

An included side is the side that links two angles together. In the diagram below, \overline{MN} is the included

side of $\angle M$ and $\angle N$.

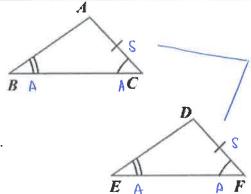

included -> the included side connects the two marked angles together

ASA Congruence Theorem (ASA)


If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.

If Angle $\angle B \cong \angle E$ Side $BC \cong EF$ Angle $\angle C \cong \angle F$ then, $\triangle ABC \cong \triangle DEF$.

A

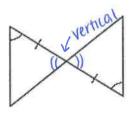


AAS Congruence Theorem (AAS)

If two angles and the non-included side of one triangle are congruent to two angles and the corresponding non-included side of a second triangle, then the two triangles are congruent.

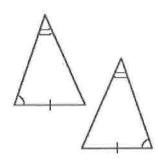
Example:

If Angle $\angle C \cong \angle F$ Angle $\angle B \cong \angle E$ Side $AC \cong DF$ then $\triangle ABC \cong \triangle DEF$.


side is outside the two marked angles

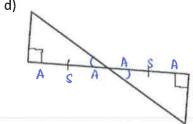
Example 1: Identify Congruent Triangles

Can the triangles be proven congruent based on the given information in the diagram? If so, state the postulate or theorem you would use. If not, why not?

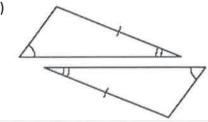

a)

b)

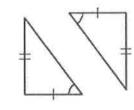
Yes, by ASA


c)

Yes, by AAS

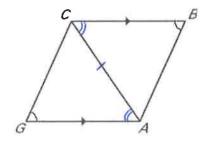

No, no angle-angle -angle

d)


Yes, by ASA

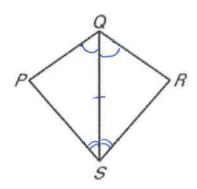
e)

Yes, by AAS


f)

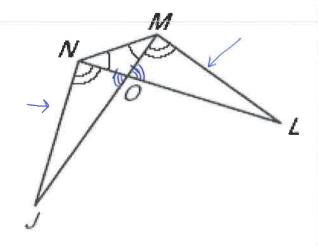
No, no side-side-angle

Example 2: Write a two-column proof


a) Given: $\angle G \cong \angle B$, $\overline{CB} \parallel \overline{GA}$ Prove: $\triangle GCA \cong \triangle BAC$

Statements	Reasons
1. <g \(="" \text{\$\exitt{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\exitt{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exittit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exittit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exittit{\$\text{\$\exittit{\$\text{\$\text{\$\text{\$\exitti}}\$\text{\$\text{\$\exittit{\$\exittit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}\$\$\tex<="" th=""><th>1. Given</th></g>	1. Given
2. CB II GA	2. Given
3. < BCA ≥ <gac< th=""><th>3. Alternate unterior Angles Theorem</th></gac<>	3. Alternate unterior Angles Theorem
4. AC ≅ AC	4. Reflexive Property
5. AGCA ¥ ABAC	5. AAS

b) Given: \overline{QS} bisects $\angle PQR$ and $\angle PSR$


Prove: $\triangle PSQ \cong \triangle RSQ$

Statements	Reasons
1. QS bisects < PQR	1. Given
2. < POS = < R Q S	2. Deforangle
, has a 1 kas	bisector
3. QS bisects < PSR	3. Given
4. <ps@ <p="" <ps="" \="" \(="" \<="" td=""><td>4. Deforangle</td></ps@>	4. Deforangle
5. QS ¥ QS	5. Reflexive Prop
6. APSQ \ ARSQ	6. ASA

c) Given: \angle OMN \cong \angle ONM $_{,}$ \angle JNO \cong \angle LMO

Prove: $\triangle NOJ \cong \triangle MOL$

Statements	Reasons
1. <0MN = <0 NM	1. Given
2. No ≅ Mo	2. Base Angles converse
3. <n0j <="" m0l<="" th="" ≅=""><th>3. VAT</th></n0j>	3. VAT
4. <jno <lmo<="" th="" €=""><th>4. Given</th></jno>	4. Given
5. ANOJ ≅ AMOL	5. ASA