Name: \qquad
Date: \qquad Period: \qquad

An included side is the side that links two angles together. In the diagram below, $\overline{M N}$ is the included side of $\angle M$ and $\angle N$.

| ASA Congruence Theorem (ASA) |
| :--- | :--- | :--- |
| If two angles and the included side of one |
| triangle are congruent to two angles and |
| the included side of a second triangle, then |
| the two triangles are congruent. |\quad| If Angle $\angle B \cong \angle E$ |
| :--- |
| Side $\overline{B C} \cong \overline{E F}$ |
| Angle $\angle C \cong \angle F$ |
| then, $\triangle A B C \cong \triangle D E F$ |

Example 1: Identify Congruent Triangles

Can the triangles be proven congruent based on the given information in the diagram? If so, state the postulate or theorem you would use. If not, why not?
a)

b)

c)

d)

e)

f)

Example 2: Write a two-column proof

a) Given: $\angle \mathrm{G} \cong \angle \mathrm{B}, \overline{C B} \| \overline{\mathrm{GA}}$

Prove: $\triangle G C A \cong \triangle B A C$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

b) Given: $\overline{Q S}$ bisects $\angle P Q R$ and $\angle P S R$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.

c) Given: $\angle \mathrm{OMN} \cong \angle \mathrm{ONM}, \angle \mathrm{JNO} \cong \angle \mathrm{LMO}$ Prove: $\Delta \mathrm{NOJ} \cong \triangle \mathrm{MOL}$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

