\qquad
Date : \qquad Period : \qquad

Slope Criterion for Parallel Lines

Two non-vertical lines are parallel if and only if they have
\qquad
Vertical lines are \qquad .

Example 1: Write equations of parallel lines.
a) Write an equation of the line passing through the point $(3,4)$ that is parallel to the line with equation $y=-4 x+5$.
b) Write the equation of the line that passes through $(3,5)$ and is parallel to the line that passes through (3, 3) and (-3, -1)
c) Graph the line parallel to line $A B$ that passes through point P and write its equation.

Slope Criterion for Perpendicular Lines

Two non-vertical lines are perpendicular if and only if

Vertical lines and horizontal lines are \qquad .

Example 2: Write equations of perpendicular lines.

a) Write an equation of the line passing through the point $(6,-3)$ that is perpendicular to the line with equation $y=4 x-7$.
b) Write the equation of the line that passes through $(-2,3)$ and is perpendicular to the line that passes through $(0,1)$ and $(-3,-1)$
c) Graph the line perpendicular to line $A B$ that passes through point P and write its equation.

Equations of Lines

Slope-intercept form: \qquad
Point - slope form: \qquad
Standard form: \qquad

Example 3: Rewrite standard form in slope-intercept form.

Given $2 x+3 y=18$, rewrite the equation in slope-intercept form. Identify the slope and y-intercept.
Then graph the line.

Can we graph an equation from standard form without rewriting it in slope-intercept form first? Of course we can!!! We can use the x-intercept and y-intercept.

Example 8: Graph a line with the equation in standard form.
a) Given $7 x+5 y=-14$, graph the line using intercepts.

To find the x-intercept, let \qquad then solve for \qquad .

b) Graph $3(y-2)=5 x-12$ and $10 x-6 y=12$ on the same coordinate plane. Then use the graph to estimate how many solutions the equations share.

