Geometry H	Name :	
Section 3.4 – 3.5 Homework	Date :	Period :

Find the unknown coordinate so the line through the points has the given slope.

1.
$$(5, y), (2, 2)$$
; slope = 3
2. $(-1, 1), (5, y)$; slope = $\frac{1}{2}$
3. $(x, 7), (4, -3)$; slope = -1

Tell whether the intersection of \overrightarrow{AB} and \overrightarrow{CD} forms a right angle.

4. A(-8,3), B(1,2), C(0,9), D(-1,0) 5. A(-8,17), B(-5,18), C(6,11), D(5,8)

Write an equation of the line that passes through point *P* and is parallel to the line with the given equation.

6.
$$P\left(\frac{5}{2},4\right); y = 4x+1$$

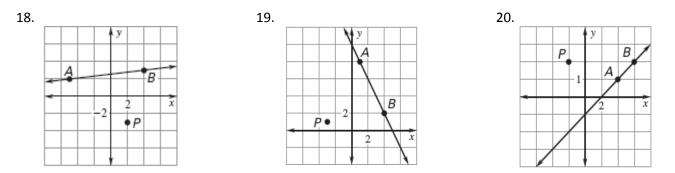
7. $P\left(1,-\frac{2}{3}\right); y = \frac{1}{3}x-7$
8. $P\left(\frac{5}{3},\frac{11}{4}\right); y = -\frac{6}{5}x+4$

Write an equation of the line that passes through point P and is parallel to the line with the given points.

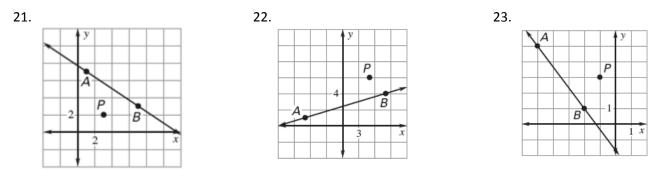
9.
$$P(3, -3)$$
 through $(1, -2)$ and $(3, 6)$
10. $P(6, -1)$ through $\left(0, \frac{3}{4}\right)$ and $\left(2, \frac{27}{4}\right)$

11.
$$P(-4, 6)$$
 through $(-3, 3)$ and $(2, -7)$

Write an equation of the line that passes through point *P* and is perpendicular to the line with the given equation.

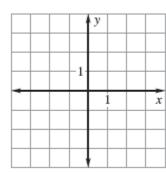

12.
$$P(1,-7); y = \frac{1}{2}x-5$$
 13. $P\left(-2,\frac{7}{2}\right); y = -\frac{1}{4}x+7$ 14. $P\left(-\frac{3}{4},\frac{16}{3}\right); y = \frac{9}{2}x+1$

Write an equation of the line that passes through point P and is perpendicular to the line with the given points.

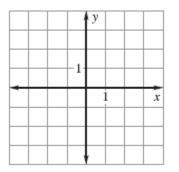

15. P(-4, -4) through (-2, 5) and (1, -1)16. P(2, -3) through (-1, -1) and (1, -9)

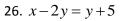
17. P(5,4) through (-4,5) and (2,2)

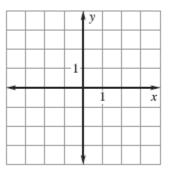
Graph the line parallel to line *AB* that passes through point *P* and write its equation.



Graph the line perpendicular to line *AB* that passes through point *P* and write its equation.

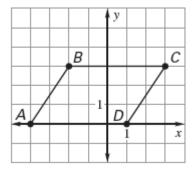



Graph the equation. It may be helpful to either put the equation in slope-intercept form or to graph using x- and y-intercepts.


24. 2x + 4y = 3

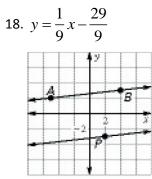
25.
$$x + 3y = 4x - 2$$

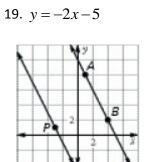
27. 4(x-2)+2=2y-4

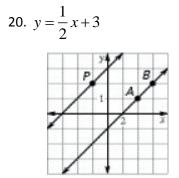

			y		
		-1-			
_				_	-
			1	1	x
				1	x
					x

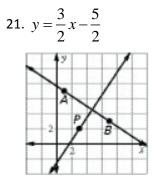
28. 3(y-4) = 7x-15

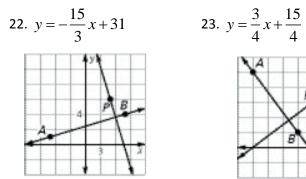
 29. 2(y+1) = 3x + 5(y+2)

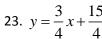

		- 1	y		
		-1-			
-					-
-			1	1	x
-				1	x

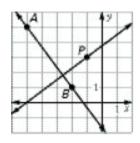

30. **Parallelograms** A parallelogram is a four-sided figure whose opposite sides are parallel. *Explain* in words and algebraically why the figure shown is a parallelogram.

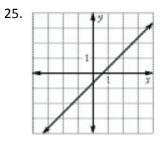


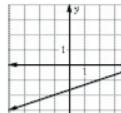

Answer Key:

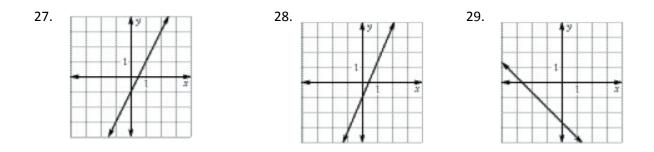

1. (5, 11)	2. (5, 4)	3. (-6, 7)	4. Yes	5. No
$6. \ y = 4x - 6$	7. $y = \frac{1}{3}x - 1$	8. $y = -\frac{6}{5}x + \frac{19}{4}$	9. $y = 4x - 15$	
10. $y = 3x - 19$	11. $y = -2x - 2$	12. $y = -2x - 5$	13. $y = 4x + \frac{23}{2}$	
14. $y = -\frac{2}{9}x + \frac{31}{6}$	15. $y = \frac{1}{2}x - 2$	16. $y = \frac{1}{4}x - \frac{7}{2}$	17. $y = 2x - 6$	










26.

24. 2

30. $m_{\overrightarrow{AB}} = \frac{3}{2}, m_{\overrightarrow{CD}} = \frac{3}{2}, m_{\overrightarrow{BC}} = 0, m_{\overrightarrow{AD}} = 0$; The opposite sides of the figure are parallel because they have the same slope.