Section 1.1: Identify Points, Lines, and Planes

- ✓ Review pages 2 5 of your textbook.
- ✓ You should be able to name points, lines, planes, segments, rays, and opposite rays.
- ✓ You should be able to identify intersections of lines and planes.
- 1. Using the diagram below, name an example of:
 - a) three collinear points A, C, B
 - b) two other names for \overrightarrow{CD} . \overrightarrow{DC} , line is
 - c) another name for plane J. Plane ALO, DCG, etc.
 - d) the intersection of plane J and \overrightarrow{KF} . Point \swarrow
 - e) a point that is noncoplanar with B, G, and K. Point F
 - f) a pair of opposite rays. \overrightarrow{CA}
 - g) an angle. <pcb, <BCO, <ACO, < DCA
 - h) another name for \overrightarrow{BC} . \overrightarrow{BA}

R

3. Draw four points, A, B, C, and D, on a line so that \overrightarrow{AC} and \overrightarrow{AB} are opposite rays and \overrightarrow{AC} and \overrightarrow{AD} are the same ray.

Section 1.2: Use Segments and Congruence

- ✓ Review pages 9 11 of your textbook.
- ✓ You should be able to find length of a segment using the Ruler Postulate and the Segment Addition Postulate.
- ✓ Compare segments to identify congruent segments.
- 5. The notation for the length of the segment between P and Q is _____.
 - a) \overrightarrow{PQ}
- b) PQ
- c) \overrightarrow{QP}
- d) PQ
- 6. In the diagram below, R is between Q and S. If RS = 44 and QS = 68, find QR.

- a) 14

- 7. Let C be between D and E. Use the Segment Addition Postulate to solve for v. (It may be helpful

to draw a diagram ①)

$$DC = 3v - 30$$

$$CE = 6v - 15$$

$$DE = 27$$

- a) v = 3
- b) v = 11
- c) v = -5
- 3V-30+6V-16=27

8. R, S and T are collinear. S is between R and T. RS = 2w + 1, ST = w - 1, and RT = 18. Find the length of RS. (It may be helpful to draw a diagram ©)

a) 16

BC=10-5=5

 $AB = (10)^2 - 6(10) + 30 = 70$

- b) 5
- (c) 13
- d) 6

RS=2(6)+1 2W+1+W-1=18 3W=18 RS=13 W=6

9. Given AC = 75 in the diagram below, find the values of x, AB, and BC.

$$x^2-6x+30+x-5=76$$

$$x^2 - 6x + 25 = 76$$

$$x^2 - 6x - 60 = 0$$

- 10. Plot the following points in a coordinate plane: A(-2, 2), B(3, 2), C(-2, -4) and D(3, -4).
 - a) Is $AB \cong CD$? Explain.

Yes, since AB= 5 and CD= 6, AB = CD because they are the same length.

b) Is there another pair of congruent segments? If so, name the segments and explain why they are congruent.

Yes, AC & BD because they are both 6 units in length

Section 1.3: Use Midpoint and Distance Formulas

- ✓ Review pages 15 18 of your textbook.
- ✓ YOU WILL NOT BE GIVEN THE FORMULAS ON THE QUIZ!!! MAKE SURE YOU STUDY THEM!!!
- ✓ You should be able to distance formula to find lengths of segments.
- ✓ You should be able to use the midpoint formula to find the midpoint of a segment in the coordinate plane, or identify a missing endpoint given the midpoint and one endpoint.
- ✓ You should be able to identify and use segment bisectors to solve problems.
- 11. T is the midpoint of \overline{PQ} . Which one of the following is **not** an appropriate statement?

(b)
$$\overline{PT} = \overline{TQ}$$

c)
$$\overline{PT} \cong \overline{TQ} \checkmark$$

a)
$$PT = TQ\sqrt{}$$
 (b) $\overline{PT} = \overline{TQ}$ c) $\overline{PT} \cong \overline{TQ}$ d) $PT + TQ = PQ\sqrt{}$

12. B is the midpoint of \overline{AC} . Find x, AB, BC, and AC if $\overline{AB} = 2x - 8$ and $\overline{BC} = x + 17$. (Draw a diagram \odot)

$$2X-8 = X+17$$
 $X=8=17$
 $X=26$

AB = 2(26) -8

AB=42
BC=42

13. B is the midpoint of AC. Find x, AB, BC, and AC.

$$\frac{5(2x+2)}{3(3x-1) + 3(3x-1) = 5(2x+2)}$$

$$\frac{3(3x-1) + 3(3x-1) = 5(2x+2)}{3(3x-1) + 3(3x-1) = 5(2x+2)}$$

$$9x-3+9x-3 = 10x+10$$

$$8x - 6 = 10x + 10$$

 $8x - 6 = 10$
 $8x = 16 \Rightarrow x = 3$

- AB = 3(3(2)-1) = 3(6-1) = 3(6) = 16 BC= 16 AC=5(2(2)+2) = 5(4+2) = 5(6) = 30
- 14. Find the midpoint of the segment with endpoints (9, 8) and (3, 5).
 - a) (3, 3/2)
- b) (12, 13)
- (c) (6, 13/2)
- d) (1, -2)

$$M = \left(\frac{9+3}{2}, \frac{8+5}{2}\right) = \left(\frac{12}{2}, \frac{13}{2}\right) = (6, 6.5)$$

- 15. The diagonals of parallelogram ABCD have a common midpoint. Which of the following is the midpoint of the diagonals of ABCD?
 - a) (4,0)
 - b) (-1, 0)
 - c) (4, 3)
 - d) (-1, 3)

$$M = \left(-\frac{5+3}{2}, -\frac{3+3}{2}\right) = \left(-\frac{2}{2}, \frac{0}{2}\right) = \left(-1, 0\right)$$

17. Given points W($\overset{\times}{1}$, $\overset{\times}{3}$), X($\overset{\times}{7}$, $\overset{\times}{1}$), Y($\overset{\times}{5}$, $\overset{\times}{1}$) and Z($\overset{\times}{2}$, $\overset{\times}{4}$), find the length of \overline{WY} and \overline{XZ} in simplest radical form. Is $WY \cong XZ$? Explain.

$$WY = \sqrt{(9-1)^2 + (1-3)^2} = \sqrt{(4)^2 + (-2)^2} = \sqrt{16+4} = \sqrt{20} = \sqrt{4\sqrt{5}} = 2\sqrt{5}$$

$$X2 = \sqrt{(2-1)^2 + (4-1)^2} = \sqrt{(-5)^2 + (3)^2} = \sqrt{25+9} = \sqrt{34}$$

$$WY \neq X2$$
because they are not the same length

18. Determine the coordinates of the midpoint of GH and find GH in simplest radical form, given the points G(-6, -7) and H(3, 6). $GH = \sqrt{(3--6)^2 + (6--7)^2}$

$$M = \left(-\frac{6+3}{2}, -\frac{7+6}{2}\right) = \left(-\frac{3}{2}, -\frac{1}{2}\right)$$

$$= \frac{\sqrt{(3+6)^2 + (6+7)^2}}{\sqrt{(9)^2 + (13)^2}}$$

$$= \sqrt{260}$$

$$= \sqrt{26} \sqrt{10}$$

$$= \sqrt{(9)^2 + (13)^2}$$

19. The positions of two airplanes approaching an airport are plotted in a coordinate plane with the airport located at (0, 0). The locations of the planes are given by the coordinates (-3, 3) and (-5, 5). Each grid square is 1 mile wide. How far apart are the approaching planes? Round your answer to the nearest tenth of a mile.

distance between planes =
$$\sqrt{(-6-3)^2+(5-3)^2}$$

= $\sqrt{(-5+3)^2+(5-3)^2}$
= $\sqrt{(-2)^2+(2)^2}$
= $\sqrt{4+4}$ = $\sqrt{8}$ \approx 2.8 miles

ANSWER KEY:

- 1. a) A, B, C \checkmark b) line i, \overrightarrow{DC} c) Any combination of THREE of the following letters: A, B, C, D, G, K \checkmark d) K \checkmark e) E or F \checkmark f) \overrightarrow{CA} and \overrightarrow{CB} \checkmark g) \angle ACD, \angle DCA, \angle DCB, \angle BCD \checkmark h) \overrightarrow{BA} \checkmark

2. c √

3. Sketches may vary. Sample sketch: DA

4. They have all of the points on \overline{PQ} in common. $\sqrt{}$

5. d
$$\sqrt{}$$
 6. d $\sqrt{}$ 7. d $\sqrt{}$ 8. c $\sqrt{}$ 9. x = 10, AB = 70, BC = 5 $\sqrt{}$

10. a) Yes, because each has a length of 5 units. $\sqrt{}$

b) Yes. Sample answer: $\overline{AC} \cong \overline{BD}$ because each has a length of 6 units \vee

11. b
$$\checkmark$$
 12. x = 25, AB = 42, BC = 42, and AC = 84 \checkmark 13. x = 2, AB = 15, BC = 15, and AC = 30 \checkmark 14. c \checkmark 15. b \checkmark 16. (-8, -7) \checkmark

17. $WY = 2\sqrt{5}$, $XZ = \sqrt{34}$; No they are not congruent because they do not have the same length.

18.
$$\left(-\frac{3}{2}, -\frac{1}{2}\right)$$
, $GH = 5\sqrt{10}$ 19. 2.8 miles