\qquad

Section 1.1: Identify Points, Lines, and Planes

\checkmark Review pages 2-5 of your textbook.
\checkmark You should be able to name points, lines, planes, segments, rays, and opposite rays.
\checkmark You should be able to identify intersections of lines and planes.

1. Using the diagram below, name an example of:
a) three collinear points
b) two other names for $\overleftrightarrow{C D}$.
c) another name for plane J.
d) the intersection of plane J and $\overleftrightarrow{K F}$.
e) a point that is noncoplanar with B, G, and K .
f) a pair of opposite rays.
g) an angle.
h) another name for $\overline{B C}$.

2. $\overrightarrow{P R}$ is represented by which sketch?
a)

b)

d)

3. Draw four points, A, B, C, and D, on a line so that $\overrightarrow{A C}$ and $\overrightarrow{A B}$ are opposite rays and $\overrightarrow{A C}$ and $\overrightarrow{A D}$ are the same ray.
4. What do $\overrightarrow{P Q}$ and $\overrightarrow{Q P}$ have in common? (HINT: Draw a picture!)

Section 1.2: Use Segments and Congruence

\checkmark Review pages 9-11 of your textbook.
\checkmark You should be able to find length of a segment using the Ruler Postulate and the Segment Addition Postulate.
\checkmark Compare segments to identify congruent segments.
5. The notation for the length of the segment between P and Q is \qquad .
a) $\overleftrightarrow{P Q}$
b) $\overline{P Q}$
c) $\overrightarrow{Q P}$
d) $P Q$
6. In the diagram below, R is between Q and S. If $R S=44$ and $Q S=68$, find $Q R$.

a) 14
b) 44
c) 112
d) 24
7. Let C be between D and E . Use the Segment Addition Postulate to solve for v . (It may be helpful to draw a diagram ())
$D C=3 v-30$
$C E=6 v-15$
$D E=27$
a) $v=3$
b) $v=11$
c) $v=-5$
d) $v=8$
8. R, S and T are collinear. S is between R and T. RS $=2 \mathrm{w}+1, \mathrm{ST}=\mathrm{w}-1$, and $\mathrm{RT}=18$. Find the length of $\overline{R S}$. (It may be helpful to draw a diagram ©)
a) $\mathbf{1 6}$
b) 5
c) 13
d) 6
9. Given $A C=75$ in the diagram below, find the values of $x, A B$, and $B C$.

A $\quad x^{2}-6 x+30 \quad$ B $\quad x-5 \quad$:
10. Plot the following points in a coordinate plane: $A(-2,2), B(3,2), C(-2,-4)$ and $D(3,-4)$.
a) Is $\overline{A B} \cong \overline{C D}$? Explain.
b) Is there another pair of congruent segments? If so, name the segments and explain why they are congruent.

Section 1.3: Use Midpoint and Distance Formulas

\checkmark Review pages 15-18 of your textbook.
\checkmark YOU WILL NOT BE GIVEN THE FORMULAS ON THE QUIZ!!! MAKE SURE YOU STUDY THEM!!!
\checkmark You should be able to distance formula to find lengths of segments.
\checkmark You should be able to use the midpoint formula to find the midpoint of a segment in the coordinate plane, or identify a missing endpoint given the midpoint and one endpoint.
\checkmark You should be able to identify and use segment bisectors to solve problems.
11. T is the midpoint of $\overline{P Q}$. Which one of the following is not an appropriate statement?
a) $P T=T Q$
b) $\overline{P T}=\overline{T Q}$
c) $\overline{P T} \cong \overline{T Q}$
d) $P T+T Q=P Q$
12. B is the midpoint of $\overline{A C}$. Find $x, A B, B C$, and $A C$ if $A B=2 x-8$ and $B C=x+17$. (Draw a diagram ())
13. B is the midpoint of $\overline{A C}$. Find $x, A B, B C$, and $A C$.

14. Find the midpoint of the segment with endpoints $(9,8)$ and $(3,5)$.
a) $(3,3 / 2)$
b) $(12,13)$
c) $(6,13 / 2)$
d) $(1,-2)$
15. The diagonals of parallelogram $A B C D$ have a common midpoint. Which of the following is the midpoint of the diagonals of $A B C D$?
a) $(4,0)$
b) $(-1,0)$
c) $(4,3)$
d) $(-1,3)$

16. The midpoint of $\overline{J K}$ is $\mathrm{M}(-2,-2)$. One endpoint is $\mathrm{J}(4,3)$. Find the coordinates of the other endpoint.
17. Given points $W(1,3), X(7,1), Y(5,1)$ and $Z(2,4)$, find the length of $\overline{W Y}$ and $\overline{X Z}$ in simplest radical form. Is $\overline{W Y} \cong \overline{X Z}$? Explain.
18. Determine the coordinates of the midpoint of $\overline{G H}$ and find $G H$ in simplest radical form, given the points $G(-6,-7)$ and $H(3,6)$.
19. The positions of two airplanes approaching an airport are plotted in a coordinate plane with the airport located at $(0,0)$. The locations of the planes are given by the coordinates $(-3,3)$ and $(-5,5)$. Each grid square is 1 mile wide. How far apart are the approaching planes? Round your answer to the nearest tenth of a mile.

ANSWER KEY:

1. a) A, B, C
b) line i, $\overleftrightarrow{D C}$
c) Any combination of THREE of the following letters: A, B, C, D, G, K
d) K
e) E or F
f) $\overrightarrow{C A}$ and $\overrightarrow{C B}$
g) $\angle \mathrm{ACD}, \angle \mathrm{DCA}, \angle \mathrm{DCB}, \angle \mathrm{BCD}$
h) $\overrightarrow{B A}$
2. c
3. Sketches may vary. Sample sketch:

4. They have all of the points on $\overline{P Q}$ in common.
5. d
6. d
7. d
8. c
9. $x=10, A B=70, B C=5$
10. a) Yes, because each has a length of 5 units.
b) Yes. Sample answer: $\overline{A C} \cong \overline{B D}$ because each has a length of 6 units
11. b
12. $x=25, A B=42, B C=42$, and $A C=84$
13. $x=2, A B=15, B C=15$, and $A C=30$
14. c
15. b
16. $(-8,-7)$
17. $W Y=2 \sqrt{5}, X Z=\sqrt{34}$; No they are not congruent because they do not have the same length.
18. $\left(-\frac{3}{2},-\frac{1}{2}\right), G H=5 \sqrt{10}$
19. 2.8 miles
