\qquad
Date: \qquad Period: \qquad
For the Unit 2 Performance Task and/or Unit 2 Assessment you should be able to...
\checkmark Identify parallel, perpendicular and skew lines. Identify parallel planes. (Section 3.1)
\checkmark Identify angles formed by 3 intersecting lines. (Section 3.1)
\checkmark Find angle measures formed by parallel lines cut by a transversal (Section 3.2)
\checkmark Use angle relationships to prove that lines are parallel (Section 3.3)
$\checkmark \quad$ Write logical arguments about parallel lines - Proofs. (Section 2.5 with 3.2 and 3.3)
\checkmark Identify parallel and perpendicular lines using slope. (Section 3.4)
$\checkmark \quad$ Write and graph equations of parallel and perpendicular lines (Section 3.5)

Practice Problems

Complete the statement using the figure at the right.

1. $\angle 1$ and \qquad are corresponding angles.
2. $\angle 3$ and \qquad are alternate interior angles.
3. $\angle 4$ and \qquad are consecutive interior angles.
4. $\angle 7$ and \qquad are alternate exterior angles.

Find $m \angle 1$ and $m \angle 2$. Explain your reasoning.

6.

7.

8. In the figure below, $k \| I$, what is the value of x and y ? Justify your answers.

9. Given $I \| m$, find the values of x. Diagram is not drawn to scale.

a) $m \angle 3=(3 x+5)^{\circ}, m \angle 5=(4 x-15)^{\circ}$
b) $m \angle 2=(7 x+24)^{\circ}, m \angle 5=72^{\circ}$

Find the value of x that makes $\boldsymbol{m} \| \boldsymbol{n}$. Explain your reasoning.
10.

11.

12. Which lines, if any, can you conclude are parallel, given that $m \angle 1+m \angle 2=180^{\circ}$? Justify your conclusion.

13. Describe how we can use slopes to determine:
a) if lines are parallel.
b) if lines are perpendicular.
14. Describe how we can use angle measures to determine:
a) if lines are parallel.
b) if lines are perpendicular.
15. Line 1: $y=\frac{1}{2} x+3$

Line $2: y=2 x-2$
16. Line a passes through $(-5,6)$ and $(7,-2)$

Line b passes through $(-12,-2)$ and $(-9,-4)$

Write the equation of the line with the given characteristics.

17. Write the equation of the line parallel to $y=6 x-4$ and passes through point $P(3,-1)$.
18. Write the equation of the line perpendicular to $y=2 x-1$ and passes through the point $P(2,-3)$.
19. Determine if line that passes through $(7,1)$ and $(10,5)$ and the line that passes through $(-8,5)$ and $(-5,9)$ are parallel, perpendicular or neither. Explain.
20. Write an equation in slope-intercept form of the line through points $S(-3,-10)$ and $T(0,-1)$.
21. Write an equation in slope-intercept form of the line parallel to the line $y=-5 x+2$ through point $P(-10,1)$.
22. On the coordinate plane, draw a pair of parallel lines (not horizontal or vertical). Then write the equations of the two lines.

23. On the coordinate plane, draw a pair of perpendicular lines (not horizontal or vertical). Then write the equations of the two lines.

24. Please write the equation of the line parallel to line k that passes through point N.

25. Please write the equation of the line perpendicular to line n that passes through point P.

Use the diagram of the cube below to complete the following statements with parallel, perpendicular, skew, or neither.
26. Plane $A B D$ and Plane $E F G$ are \qquad .
27. $\overleftrightarrow{A B}$ and $\overleftrightarrow{G H}$ are \qquad .
28. $\overleftrightarrow{A E}$ and $\overleftrightarrow{E F}$ \qquad .
29. $\overleftrightarrow{A B}$ and $\overleftrightarrow{G F}$ are \qquad _.
30. Plane $A B C$ and Plane $B F G$ are \qquad .

Complete the following proofs. Note...you should review all of the proofs that we have done. These are just a few samples to help you practice!!!
31. What property is shown by the following statement?

If $\quad m \angle 3 \cong m \angle 5$
And $m \angle 5 \cong m \angle 8$
Then $m \angle 3 \cong m \angle 8$
32. Given $-8+2(4 x-3)=4+2 x$, please prove $x=3$.

Statements	Reasons
$1 .-8+2(4 x-3)=4+2 x$	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.

33. Using the diagram below, prove that $m \angle 5=48^{\circ}$, given that $m \| I, m \angle 1=(2 x+44)^{\circ}$, and $m \angle 5=(5 x+38)^{\circ}$

Statements	Reasons	
1. $m \\| I, m \angle 1=(2 x+44)^{\circ}$, $m \angle 5=(5 x+38)^{\circ}$	1. Given	
2.	2.	
3.	3.	
4.	5.	
5.	6.	
$6 . m \angle 5=(5(2)+38)^{\circ}$	7.	
$7 . m \angle 5=48^{\circ}$		

34. Given $m \angle 1=(5 x-3)^{\circ}, m \angle 3=(2 x+6)^{\circ}$, prove $m \angle 2=168^{\circ}$.

Statements	Reasons
1. $m \angle 1=(5 x-3)^{\circ}$, $m \angle 3=(2 x+6)^{\circ}$	1. Given
2.	2.
3.	3.
4.	4.
5.	5.
6. $m \angle 2+m \angle 3=180$	7. Substitution
7.	8.
8. $m \angle 2=168^{\circ}$	

35. Given the first two statements and reasons, what reason is used for the third statement?

Statements	Reasons
1. $\angle 1$ and $\angle 2$ are supplementary	1. Given
2. $\angle 2 \cong \angle 3$	2. Given
3. $\angle 1$ and $\angle 3$ are supplementary	3.

36. Given $m \angle A B C=(15 x+32)^{\circ}, m \angle D E F=(9 x+68)^{\circ}$ and $m \| n$, please prove $x=6$.

Statements	Reasons	
$1 . m \angle A B C=(15 x+32)^{\circ}$, $m \angle D E F=(9 x+68)^{\circ}, m \\| n$	1.	
2.	2.	
3.	3.	
4.	4.	
5. $x=6$	5.	

37. Given $\angle 1 \cong \angle 3$, prove $\angle 2 \cong \angle 4$.

Statements	Reasons	
1.	1.	
$2 . g \\| h$	2.	
3.	3.	

38. Given $\angle 1 \cong \angle 2, \angle 3 \cong \angle 4$, Prove $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$

Statements	Reasons
$1 . \angle 1 \cong \angle 2$	1. Given
$2 . \angle 2 \cong \angle 3$	2.
$3 . \angle 3 \cong \angle 4$	3.
$4 . \angle 1 \cong \angle 4$	4.
5.	5.

39. Given: $m \angle L N F=(3 x-15)^{\circ}, m \angle E F N=(2 x+10)^{\circ}, \overleftrightarrow{L N} \| \overleftrightarrow{E F}$. Please prove: $x=37$.

40. Given: $\angle 1 \cong \angle 2, \angle 1 \cong \angle 4$. Please prove $x \| y$.

Statements	Reasons	
1. $\angle 1 \cong \angle 2$	1.	
2. $a \\| b$	2.	
3. $\angle 3 \cong \angle 4$	3.	
4. $\angle 1 \cong \angle 4$	4.	
5. $\angle 1 \cong \angle 3$	5.	
6. $x \\| y$	6.	

Unit 2 Review Answer Key

1) $\angle 5$
2) $\angle 6$
3) $\angle 6$
4) $\angle 2$
5) $\mathrm{m} \angle 1=54^{\circ}$ using the Vertical Angles Theorem; $\mathrm{m} \angle 2=54^{\circ}$ using the Corresponding Angles Postulate
6) $\mathrm{m} \angle 1=85^{\circ}$ using the Consecutive Interior Angles Theorem; $\mathrm{m} \angle 2=95^{\circ}$ using the Alternate Interior Angles Theorem
7) $\mathrm{m} \angle 1=135^{\circ}$ using the Corresponding Angles Postulate; $\mathrm{m} \angle 2=45^{\circ}$ using the Linear Pair Postulate (with $\angle 1$)
8) $x=49$: Linear Pair Postulate
$y=49$: Alternate Interior Angles Theorem
9) a) $x=20$
b) $x=12$
10) $x=107$ and $m|\mid n$ would be because of the Consecutive Interior Angles Converse Theorem.
11) $x=133$ and $m \| n$ would be because of the Alternate Exterior Angles Converse Theorem.
12) $j \| k$ by the consecutive interior angles converse
13) A) Slopes are equal; B) Slopes are opposite reciprocals or the product of the slopes equals -1 .
14) A) We can look for one pair of Alternate Interior/Alternate Exterior/Corresponding angles and see if they're congruent. Another option would be to see if one pair of consecutive interior angles are supplementary. If one of those works, then we can use the correct "Converse" theorem/postulate to justify the parallel lines.
B) Angles should measure 90° when lines are perpendicular.
15) Neither
16) Parallel
17) $y=6 x-19$
18) $y=-1 / 2 x-2$
19) The lines are parallel, each line has a slope of $\frac{4}{3}$
20) $y=3 x-1$
21) $y=-5 x-49$
22) Answers may vary, just make sure the slopes are the same and the lines have different y intercepts.
23) Answers may vary, just make sure that the slopes are opposite reciprocals of each other and/or that the product of the slopes is -1 .
24) $y=-\frac{3}{2} x+4$
25) $y=-\frac{1}{3} x+2$
26) Parallel
27) Parallel
28) Perpendicular
29) Skew
30) Perpendicular
31) Transitive Property
32)

Statements	Reasons
1. $-8+2(4 x-3)=4+2 x$	1. Given
2. $-8+8 x-6=4+2 x$	2. Distributive Property
3. $8 x-14=4+2 x$	3. Combine Like Terms
4. $6 x-14=4$	4. Subtraction Property
5. $6 x=18$	5. Addition Property
$6 . x=3$	6. Division Property

33)

Statements	
1. $m \angle 1=(5 x-3)^{\circ}, \quad m \angle 3=(2 x+6)^{\circ}$	Reasons
2. $5 x-3=2 x+6$	2. Given
3. $3 x-3=6$	3. Subtractical Angles Theorem Property
4. $3 x=9$	4. Addition Property
5. $x=3$	5. Division Property
6. $m \angle 2+m \angle 3=180$	6. Linear Pair Postulate
7. $m \angle 2+12=180$	7. Substitution Property
8. $m \angle 2=168^{\circ}$	8. Subtraction Property

34)

Statements	
1. $m \mathrm{P} /, m \angle 1=(2 x+44)^{\circ}, m \angle 5=(5 x+38)^{\circ}$	1. Given
2. $2 x+44=5 x+38$	2. Corresponding Angles Postulate
3. $44=3 x+38$	3. Subtraction Property
4. $6=3 x$	4. Subtraction Property
5. $x=2$	5. Division Property
6. $m \angle 5=(5(2)+38)^{\circ}$	6. Substitution Property
7. $m \angle 5=48^{\circ}$	7. Simplification

35) Substitution
36) Key step: Use the Alternate Exterior Angles Theorem to get $15 x+32=9 x+68$ and solve from there.
37) Key steps: Use the Alternate Exterior Angles Converse Theorem to justify step 2. Then the Alternate Interior Angles Theorem will justify why $\angle 2 \cong \angle 4$ in step 3.
38) Key Steps: Use the Vertical Angles Theorem to justify step 2. Use the Transitive property to justify step 4. Finish the proof with the Alternate Interior Angles Converse Theorem
39) Key Step: Use the Consecutive Interior Angles Theorem to get $(3 x-15)+(2 x+10)=180$ and solve from there.
40) Key Steps: Use the Alternate Interior Angles Converse Theorem to get a||b in step 2. Use the Corresponding Angles Postulate to get $\angle 3 \cong \angle 4$ in step 3. Use the Transitive Property to justify why $\angle 1 \cong \angle 3$ in step 5 . Finish the proof off with the Alternate Exterior Angles Converse Theorem.
