\qquad
Date : \qquad

Geometry (A) Unit 1 Assessment Topic List

By the end of unit 1, you should be able to...

Section 1.1

- Name points, lines, planes, segments, rays, and opposite rays.
- Identify intersections of lines and planes.

Section 1.2

- Find length of a segment using the Ruler Postulate and the Segment Addition Postulate.
- Compare segments to identify congruent segments.

Section 1.3

- Use distance formula to find lengths of segments.
- Use the midpoint formula to find the midpoint of a segment in the coordinate plane, or identify a missing endpoint given the midpoint and one endpoint.
- Identify and use segment bisectors to solve problems.

Section 1.4

- Name angles, and identify parts of angles.
- Find measures of angles using the Protractor Postulate, Angle Addition Postulate.
- Classify angles by their measure.
- Identify congruent angles, and use angle bisectors to find measures of angles.

Section 1.5

- Find measures of complementary and supplementary angles
- Use vertical angle theorem and linear pair postulate to find measures of angles

Use the drawing below for \#1-7. Use proper notation! (Section 1.1)

1. Give two other names for $\overleftrightarrow{A B}$.
2. Name a line segment found in the sketch. Then state another name for it.
3. Name all rays with endpoint G.
4. Name the intersection of line m and the plane M.

5. Is it possible for two different planes to intersect in a line? If yes, give a real-world example.
6. Name three points that are coplanar.
7. Name three points that are collinear.
8. Draw a sketch showing a line intersecting two planes which do not intersect.
9. If $E F=2 x-12, F G=3 x-15$, and $E G=23$, find the values of $x, E F$ and $F G$. The drawing is not to scale. (Sect
1.2)

10. A climber uses a rope to descend a vertical cliff. Let A represent the point where the rope is secured at the top of the cliff, let B represent the climber's position and let C represent the point where the rope is secured at the bottom of the cliff. (Sect 1.2)
a. Draw and label a line segment that represents the situation.
b. Write the equation using the segment addition postulate.
c. If $A C$ is 52 feet and $A B$ is 31 feet, how much farther must the climber descend to reach the bottom of the cliff.
11. Given that the endpoints of $\overline{A B}$ are $A(7,8)$ and $B(4,2)$, answer the following: (Sect 1.3)
a) Find the coordinates of the midpoint.
b) What is the length of $\overline{A B}$? (Round answer to nearest tenth).
12. The midpoint of $M N$ is $P(5,5)$. One of the endpoints is $M(-4,2)$. Find the coordinate of endpoint N. (Sect 1.3)
13. If T is the midpoint of $\overline{S U}$, find the values of x and SU . (Sect 1.3)

14. $\overrightarrow{M O}$ bisects $\angle \mathrm{LMN}, \mathrm{m} \angle \mathrm{LMN}=5 \mathrm{x}-23, \mathrm{~m} \angle \mathrm{LMO}=\mathrm{x}+32$. Find $\mathrm{m} \angle \mathrm{NMO}$. The diagram is not to scale. Hint: Think about what it means to bisect an angle. If $m \angle L M O=x+32$, then what is $m \angle N M O$?

15. Given $\mathrm{m} \angle \mathrm{WXZ}=84^{\circ}$, find $\mathrm{m} \angle \mathrm{YXZ}$. (Sect 1.4)

16a. Write 3 names for the angle shown (sect 1.4)

16b. Draw and measure an example of an acute angle, obtuse angle, straight angle, and right angle.
17. The foul lines of a baseball field intersect at home plate to form a right angle. You hit a baseball whose path forms an angle of 64° with the third base foul line (see figure at right). What is the angle between the first base foul line and the path of the baseball? (Sect 1.4)

18. If $\angle A$ and $\angle B$ are complementary and $m \angle A=52^{\circ}$, what is the $m \angle B$?
19. If $\angle J$ and $\angle K$ are supplementary and $m \angle J=52^{\circ}$, what is the $m \angle K$?
20. If $\angle A$ and $\angle B$ are complementary angles, $m \angle A=(3 x-10)^{\circ}$ and $m \angle B=(x+8)^{\circ}$, what is $m \angle A$?

Using the diagrams below, please solve for x .
21.

22.

23. Use the diagram below to complete the following:
a. Name two acute vertical angles.
b. Name two obtuse vertical angles.
c. Name a linear pair.
d. Name two acute adjacent angles.
e. Name an angle supplementary to $\angle \mathrm{FKG}$.

Given the diagrams below, please solve for x and y.
24.

25.

26.

Unit 1 Review Packet Answers

1) Possible answers include: $\overleftrightarrow{B A}, \overleftrightarrow{B G}$, line m etc.
2) Possible answers include: $\overline{G D}, \overline{D G}$ or $\overline{A B}, \overline{B A}$ etc.
3) $\overrightarrow{G A}, \overrightarrow{G D}, \overrightarrow{G F}, \overrightarrow{G E}, \overrightarrow{G C}$, and $\overrightarrow{G B}$
4) G
5) Yes, 2 planes could be the wall with the floor. Or two walls next to each other etc.
6) Possible answers include: C,G,E or D,E,F
7) Possible answers include: C,G,F or E,G,D
8) See sketch to the right \rightarrow
9) $x=10 . E F=8, F G=15$
10) $A B+B C=A C \quad 21 \mathrm{ft}$
11) $\mathrm{M}(5.5,5), A B \approx 6.7$
12)

12) $(14,8)$
(If you got $(-13,-1)$ then you used the wrong midpoint...like I did originally by accident $\odot-m m$)
13) $x=5, S U=90$
14) $x=29,61^{\circ}$
15) $x=12,69^{\circ}$
16) $\angle \mathrm{ADI}, \angle \mathrm{IDA}$ and $\angle \mathrm{D}$ (measures may vary)

17) 26°
18) $m \angle B=38^{\circ}$
19) $m \angle K=128^{\circ}$
20) $m \angle A=59^{\circ}$
21) $x=5$
22) $x=10$
23) a) $\angle E K H \& \angle F K G$
b) $\angle E K F \& \angle H K G$
c) $\angle H K E$ \& $\angle E K F, \angle H K G \& \angle K G F, \angle H K J \& \angle J K F, \angle E K F \& \angle F K G$
d) $\angle F K G \& \angle G K J$
e) $\angle E K F, \angle G K H$
24) $x=25, y=18$
25) $x=21, y=94$
26) $x=9, y=6$

