Theorem

30° - 60° - 90° Triangle Theorem

In a $30^{\circ} - 60^{\circ} - 90^{\circ}$, the length of the hypotenuse is twice the length of shorter leg, and the longer leg is $\sqrt{3}$ times the length of the shorter leg.

Diagram

- **Note The short leg is always opposite the 30° angle!
 - It is best to find the length of the short leg first if you can! (if it is not already given)

Example 1: Find lengths in a 30° - 60° - 90° triangle

long = short. 13

Find the values of x and y. Leave answer in simplest radical form.

a. iong short x = q60° 18 hyp

hyp = a.short

$$\frac{18}{a} = \frac{3 \cdot x}{3}$$

X=9

hyp=a-short

hyp=a-snort

long = short · 13

y= 12\3\3

y=12 19

4=12(3)

hyp: short.a

4= 2.11 \(3

long = short · 13

Example 2: Apply 30° - 60°- 90° Triangle Theorem

a. You make a guitar pick that resembles and equilateral triangle with side lengths of 32 mm. What is the approximate height of the pick?

To find height, Split the Δ in half:

long= short 13

X = 27.7 mm tall

b. An equilateral triangle has a height of $10\sqrt{3}$. What is the length of a side of the triangle?

to find missing sides, cut the A in half

Each side of the \$\Delta\$ is 20 units long = Short · V3

101 × 1

X=10

hyp= a-short

y= a.10

y=a0