Name :	
Date :	Period :

Theorem	Diagram
30° – 60° – 90° Triangle Theorem In a 30° – 60° – 90°, the length of the hypotenuse is twice the length of shorter leg, and the longer leg is $\sqrt{3}$ times the length of the shorter leg.	$ \begin{array}{c} 2x & 60^{\circ} \\ \hline 30^{\circ} \\ \hline x\sqrt{3} \end{array} $

**Note – The short leg is always opposite the 30° angle!

- It is best to find the length of the short leg first if you can! (if it is not already given)

Example 1: Find lengths in a 30° – 60° – 90° triangle

Find the values of x and y. Leave answer in simplest radical form.

Example 2: Apply 30° – 60° – 90° Triangle Theorem

a. You make a guitar pick that resembles and equilateral triangle with side lengths of 32 mm. What is the approximate height of the pick?

b. An equilateral triangle has a height of $10\sqrt{3}$. What is the length of a side of the triangle?

