\qquad
Date : \qquad Period : \qquad

Theorem	
$30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Theorem	
In a $30^{\circ}-60^{\circ}-90^{\circ}$, the length of the hypotenuse	
is twice the length of shorter leg, and the longer	
leg is $\sqrt{3}$ times the length of the shorter leg.	

**Note - The short leg is always opposite the 30° angle!

- It is best to find the length of the short leg first if you can! (if it is not already given)

Example 1: Find lengths in a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle

Find the values of x and y. Leave answer in simplest radical form. x

b.

c.

d.

Example 2: Apply $\mathbf{3 0 ^ { \circ }} \mathbf{- 6 0 ^ { \circ }}-\mathbf{9 0}$ Triangle Theorem

a. You make a guitar pick that resembles and equilateral triangle with side lengths of 32 mm . What is the approximate height of the pick?
b. An equilateral triangle has a height of $10 \sqrt{3}$. What is the length of a side of the triangle?

