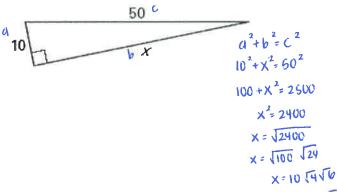
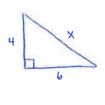

Pythagorean Theorem In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.

Period:


Examples: Identify the unknown side as a *leg* or *hypotenuse*. Then, use the Pythagorean Theorem to find length of missing side of a right triangle. Write your answer in simplest radical form.

1. Solve for x.


 $9^{2}+b^{2}+c^{2}$ $6^{2}+9^{2}+c^{2}$ $36+81=c^{2}$ $117=c^{2}$ $c=\sqrt{117}$ $c=\sqrt{9}\sqrt{13}$

2. Solve for x.

Example 3: Two sides of a right triangle are 4 and 6. Please find all of the possible lengths for the missing side and state whether the missing side is a leg or a hypotenuse.

$$4^{2}+6^{2} \times x^{2}$$
 $10+30=x^{2}$
 $52=x^{2}$
 $x=\sqrt{50}$
 $x=\sqrt{4}\sqrt{13}$
 $x=2\sqrt{13}$ hypotenuse

 $x^{2}+4^{2}=6^{2}$ $x^{2}+16=36$ $x^{2}=20$ $x=\sqrt{4}\sqrt{5}$ $x=2\sqrt{5}$ Leg

Example 4: Use Pythagorean Theorem to solve real-world problems.

A ladder rests against a house. The foot of the ladder is 8 feet from the house. The top of the ladder rests 15 feet above the ground. What is the length of the ladder?

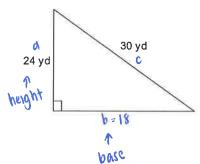
$$a^{2}+b^{2}=c^{2}$$

$$16^{2}+8^{2}=c^{2}$$

$$226+64=c^{2}$$

$$289=c^{2}$$

$$c=\sqrt{289}$$

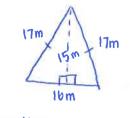

C= 17

The ladder is

Example 5: Find area and perimeter of a right triangle

A developer is planning a new park in the shape of a right triangle, as represented in the diagram below. Find the perimeter and area of the new park.

* First find missing side of the Dusing Pythag. Theorem



$$a^{2}+b^{2}=c^{2}$$
 $24^{2}+b^{2}=30^{2}$
 $576+b^{2}=900$
 $b^{2}=324$
 $b=18$

Area =
$$\frac{1}{2}$$
 (base) (height)
= $\frac{1}{2}$ (18)(24)
A=albyd²

Example 6: Find the area of an isosceles triangle.

Find the area of the isosceles triangle with side lengths 16 meters, 17 meters, and 17 meters.

* First draw height of Δ from top vertex to base as the perpendicular bisector

* Then split Δ in two to find height

Base=16m Height=18m h 17 c base is now half the origina

$$a^{2}+b^{2}=c^{2}$$
 $h^{2}+8^{2}=17^{2}$
 $h^{2}+64=289$
 $h^{2}=225$
 $h=\sqrt{225}$
 $h=15$

In an isosceles triangle, the height to the base is also a perpendicular bisector!

makes a splits 90° base in angle half

*Find area of entire isosceles Δ : $A = \frac{1}{2}$ (base)(height)

$$= \frac{1}{2} (16)(15)$$

$$A = 120 \text{ m}^2$$