\qquad
Date : \qquad Period: \qquad

- I can use SSS~ and SAS~ to show that triangles are similar.
- I can use SSS~ and SAS~ to find side lengths and angle measures.

Theorem Name	What it says...	Example with explanation
Side-Side-Side Similarity SSS~	If the three sides of one triangle are proportional to the three sides of another triangle, then the triangles are similar. (Check to see if the ratios of the three corresponding sides are the same, if they are, the reduced fraction is your scale factor and the triangles are similar!)	$\frac{\text { short }}{\text { short }}, \frac{\text { medium }}{\text { medium }}, \frac{\text { long }}{\text { long }} \Rightarrow--\square$ the three fractions reduceto $\triangle A B C: \triangle D E F$ by SSS : with scale factor

$\checkmark \quad I$ can use SSS~ to identify similar triangles.

1. Is either $\triangle R S T$ or $\triangle X Y Z$ similar to $\triangle A B C$?

$\checkmark \quad$ I can use SSS~ to solve problems.

1. Find the value of x that makes $\triangle A B C \sim \triangle D E F$ then find the missing side lengths.

Side-Angle-Side Similarity SAS~	If two sides of one triangle are proportional to two sides of another triangle and their included angles are congruent, then the triangles are similar. (Check to see if the ratios of two pairs of corresponding sides reduce to the same fraction and that the angles that joins the two sides are congruent)	$\frac{\text { short }}{\text { short }}, \frac{\text { long }}{\text { long }} \Rightarrow-\quad-$ both fractions reduce to \qquad and their included angles are both 57° $\triangle A B C$: $\triangle D E F$ by SAS : with scale factor

$\checkmark \quad$ I can use SAS~ to identify similar triangles.

1. Are the triangles similar? If so, write a similarity statement and state the similarity postulate or theorem that justifies your answer.
a)

b)

$\checkmark \quad$ I can use SAS ${ }^{\sim}$ to solve problems.

1. Find the value of x that makes $\triangle P Q R \sim \triangle T S R$ the find the missing side lengths.

2. Find the value of m that makes $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ when $A B=3, B C=4, D E=2 \mathrm{~m}, E F=\mathrm{m}+5$ and $\angle B \cong \angle \mathrm{E}$

CONCEPT SUMMARY

Triangle Similarity Postulate and Theorems

AA Similarity Postulate

If $\angle A \cong \angle D$ and $\angle B \cong \angle E$, then $\triangle A B C \sim \triangle D E F$.

SSS Similarity Theorem

If $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F^{\prime}}$, then $\triangle A B C \sim \triangle D E F$.

SAS Similarity Theorem

If $\angle A \cong \angle D$ and $\frac{A B}{D E}=\frac{A C}{D F^{\prime}}$ then $\triangle A B C \sim \triangle D E F$.
\checkmark Show that the triangles are similar and write a similarity statement. Explain your reasoning.
1.

2.

3.

\qquad
Date : \qquad Period: \qquad

1. Is either $\triangle L M N$ or $\triangle R S T$ similar to $\triangle A B C$? If so, state the scale factor.

2. Is either $\triangle J K L$ or $\triangle R S T$ similar to $\triangle A B C$? If so, state the scale factor.

Determine whether the two triangles are similar. If they are similar, write a similarity statement and find the scale factor of Triangle B to Triangle A.

4.

Show that the triangles are similar and write a similarity statement.
5.

6.

7. Find the value of m that makes $\triangle A B C \sim \triangle D E F$ when $A B=3, B C=4, D E=2 m, E F=m+5$, and $\angle B \cong \angle E$. Include a sketch.
8. Find the value of n that makes $\triangle P Q R \sim \triangle X Y Z$ when $P Q=4, Q R=5, X Y=4 n+4, Y Z=7 n-1$ and $\angle Q \cong \angle Y$. Include a sketch.
9. In the diagram at the right, $\triangle A C E \sim \triangle D C B$. Find the length of $A B$.
A. 12
B. 18
C. $\frac{35}{2}$
D. $\frac{30}{7}$

Sketch the triangles using the given description. Explain whether the two triangles can be similar. If they are, state the reason why they are similar.
 10. The side lengths of $\triangle A B C$ are 8,10 and 14 .
 The side lengths of $\triangle D E F$ are 16,20 and 26 .
 11. In $\triangle A B C, A B=15, B C=24$ and $m \angle B=38^{\circ}$.
 In $\triangle D E F, D E=5, E F=8$, and $m \angle E=38^{\circ}$.

Pine Tree In order to estimate the height h of a tall pine tree, a student places a mirror on the ground and stands where she can see the top of the tree, as shown. The student is 6 feet tall and stands 3 feet from the mirror which is 11 feet from the base of the tree.
12. What is the height h (in feet) of the pine tree?
13. Another student also wants to see the top of the tree. The other student is 5.5 feet tall. If the mirror is to remain 3 feet from the student's feet, how far from the base of the tree should the mirror be placed?
Answer Key :

1.) $\triangle L M N$, Scale $\frac{1}{2}$ or $1: 2$
2) $\triangle R S T$, Scale $\frac{1}{2}$ or $1: 2$
3) Yes, $\triangle Z X Y: \triangle K L J$, Scale $: \frac{4}{1}$ or $4: 1$
4) Not Similar
5) $\triangle A C B: \triangle D C E$ by SAS Similarity. Scale : $\frac{3}{2}$ or $3: 2$
6) $\triangle T P Q: \triangle R P L$ by SSS Similarity. Scale $: \frac{1}{2}$ or $1: 2$
7) $m=3$
8) $n=3$
9) B
10) Not Similar
11) Yes, $\triangle A B C: \triangle D E F$ by SAS Similarity
12) 22 feet
13) 12 feet

