Name:	Keu	
	0	

Date: _____ Period: ____

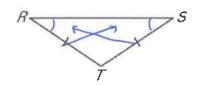
I can use theorems about isosceles and equilateral triangles to solve problems.

First things first: Some theorems that will help you solve problems in this section.

Theorem	Explanation	Picture	
Base Angles Theorem	If two <u>Sides</u> of a triangle are congruent, then the <u>angles</u> opposite them are congruent	$ \begin{array}{c} A \\ If \overline{AB} \cong \overline{AC}, \text{ then} \\ & \swarrow B \cong \underline{\checkmark C} \end{array} $	
Converse of the Base Angles Theorem	If two <u>ungles</u> of a triangle are congruent, then the <u>Sides</u> opposite them are congruent	$ \begin{array}{c} A \\ If \angle B \cong \angle C, \text{ then} \\ \hline AB} \cong \overline{AC} \end{array} $	
Corollary of the Base Angles Theorem	If a triangle is <u>equilateral</u> , then it is <u>equilangular</u>	$ \begin{array}{c} A & If \overline{AB} \cong \overline{BC} \cong \overline{AC}, then \\ & \stackrel{\checkmark}{A} \cong \stackrel{\checkmark}{B} \cong \stackrel{\checkmark}{C} \end{array} $	
Corollary to the converse of the Base Angles Theorem	If a triangle is <u>equiangular</u> , then it is <u>equilateral</u>	$ \begin{array}{c} A \\ If \angle A \cong \angle B \cong \angle C, \text{ then} \\ \hline AB } \cong \overline{AC} \cong \overline{BC} $	

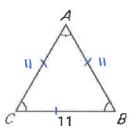
Now let's try some examples:

1) In the diagram, $RT \cong \overline{ST}$. Please name two congruent angles.



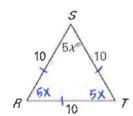
By the base angles theorem, <R \(\sigma \cdot S \)

2) Find AC and AB in the triangle below,

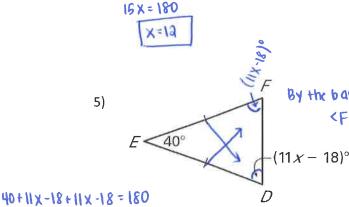


Since AABC is equiangular, it is also equilateral, so all sides are congruent Ac=11 and AB=11

Please solve for x.

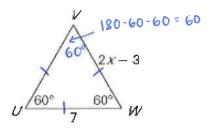


since ARST is equilateral, it is also equiangular, which means each angle has a measure of 5x°.



By the base angles theorem, <F= <D so m<F=(11x-18)°

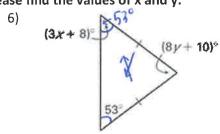
4)



since all angles have a measure of 60° DUVW is equiangular and also equilateral, which means UW YVW

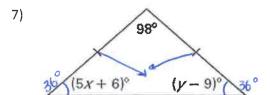
22X+4=180

Please find the values of x and y.



By the base angles theorem, 53=3x+8

using the triangle sum theorem,



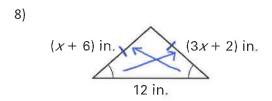
By the base angles theorem, 5x+6=y-9, but there are 2 variables so we do not have enough into to solve.

Since we know the vertex angle, and we know the 2 base angles are E, we can take the total A sum of 180° and subtract the 98° angle we know:

The 7a is the angle measure we need to share between the 2 base angles, so we can divide by a to get a base angle measure of 36°.

5X=30 X=6

Please find the perimeter of the triangle.



By the base angles converse, the sides (x+6) in and (3x+2) in are congruent. To solve for x, set the sides equal:

Perimeter =
$$x+6+3x+a+1a$$

= $a+6+3(a)+a+1a \leftarrow substitute$ in
 $x=a$
= $8+6+14$
P = $a8$ inches

9)
$$(12x-13) \text{ m}$$
 $(7x+2) \text{ m}$ $(2x+17) \text{ m}$

Since the \triangle is equiangular, it is equilateral. To solve for X, set <u>any</u> two sides equal:

Perimeter =
$$12x-13+7x+2+2x+17$$

= $12(3)-13+7(3)+2+2(3)+17$
= $36-13+21+2+6+17$
= $23+23+23$
P = 69 meters