
- I can identify corresponding parts of congruent triangles.
- I can use CPCTC to prove sides and angles are congruent in triangles.

Given $\Delta MPO \cong \Delta RST$, complete the following statements:

4.
$$\overline{MO} \cong \overline{RT}$$

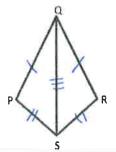
5.
$$\overline{SR} \cong \overline{PM}$$

6.
$$\overline{ST} \cong \boxed{0}$$

When you know triangles are congruent, and you state that corresponding parts are congruent (like you just did when you answered questions 1-6 above), you are using a property called **CPCTC**, which is a quick and easy way of saying :

- C Corresponding
- P parts of
- C congruent
- T triangles are
- C conquent

* once you have proven 2 D's are using SSS, SAS, ASA, AAS or HL, any other pairs of angles/sides are using CPCTC

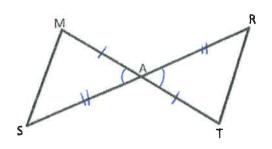

Example 1:

Given : $\overline{PQ}\cong \overline{QR}$, $\overline{PS}\cong \overline{SR}$

Prove : ∠PQS \ ∠RQS \ * angles:

k angles:

the proof


Statements	Reasons
$1. \overline{PQ} \cong \overline{QR}$	1. Given
$2. \overline{PS} \cong \overline{SR}$	2. Given
3. $\overline{QS} \cong \overline{QS}$	3. Reflexive Property
4. ΔPQS ≅ ΔRQS	4. 555
5. ∠PQS ≅ ∠RQS	5. CPLTC

Example 2:

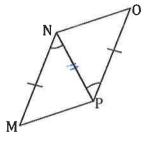
Given : A is the midpoint of \overline{MT}

A is the midpoint of $\overline{\it SR}$

Prove: ∠M ≅ ∠T * angles:
Use cpcTC

Statements	Reasons
1. A is the midpoint of \overline{MT}	1. Given
2. MA TA	2. Definition of Midpoint
3. A is the midpoint of \overline{SR}	3. Given
4. SA FRA	4. Definition of Midpoint
5. <mas 2="" <tar<="" td=""><td>5. Vertical Angles Theorem</td></mas>	5. Vertical Angles Theorem
6. ΔMAS ≅ ΔTAR	6. SAS
7. <m='lt< td=""><td>7. CPCTC</td></m='lt<>	7. CPCTC

Example 3:

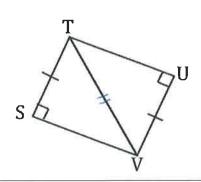

Given: $\angle MNP \cong \angle OPN$

 $\overline{MN} \cong \overline{OP}$

Prove : $\overline{MP} \cong \overline{NO}$

* sides:

USE CPCTC

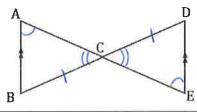

Statements	Reasons	
1. LWND & CODN	1. Given	
$2.\overline{MN} \cong \overline{OP}$	2. Given	
3. NP ~ NP	3. Reflexive Property	
4. ΔMNP ≅ ΔΟΡΝ	4. SAS	
$5. \overline{MP} \cong \overline{NO}$	5. CPCTC	

Example 4:

Given : $\overline{ST} \cong \overline{UV}$

∠TSV and ∠VUT are right angles

Prove : ∠SVT ≅ ∠UTV) * angles: Use CPCTC


Statements	Reasons
1. ST = UV	1. Given
2. <tsv <vut="" and="" angles<="" are="" right="" td=""><td>2. Given</td></tsv>	2. Given
3. ΔTSV and ΔVUT are right triangles	3. Def. of right triangle
$4.\overline{TV}\cong \overline{TV}$	4. Reflexive Property
5. ΔTSV ≅ ΔVUT	5. HL
6. ⟨SVT ≅ ⟨UTV	6. CPCTU

Example 5:

Given: $\overline{AB} \parallel \overline{DE}$

C is the midpoint of \overline{BD}

Prove: $\overline{AC} \cong \overline{EC}$ * Sides: Use CPCTC

Statements	Reasons
1. $\overline{AB} \parallel \overline{DE}$	1. Given
2. ∠CAB ≅ ∠CED	2. Alt. Int. Angles Thm
3. C 13 the midpoint of BD	3. Given
4. BC = DC	4. Definition of Midpoint
5. ∠ACB ≅ ∠ECD	5. VAT
6. ΔBAC ≅ ΔEDC	6. AAS
$7.\overline{AC} \cong \overline{EC}$	CPCT C