

- I can identify corresponding parts of congruent triangles.
 - I can use CPCTC to prove sides and angles are congruent in triangles.

Given $\triangle MPO \cong \triangle RST$, complete the following statements:

4.
$$\overline{MO} \cong$$

6.
$$\overline{ST} \cong \underline{\hspace{1cm}}$$

When you know triangles are congruent, and you state that corresponding parts are congruent (like you just did when you answered questions 1-6 above), you are using a property called **CPCTC**, which is a quick and easy way of saying :

C

P

C_____

<u>T</u>_____

C

Example 1:

Given : $\overline{PQ}\cong \overline{QR}$, $\overline{PS}\cong \overline{SR}$

Prove : $\angle PQS \cong \angle RQS$

Statements	Reasons
1. $\overline{PQ} \cong \overline{QR}$	1.
$2. \overline{PS} \cong \overline{SR}$	2.
3.	3. Reflexive Property
4. $\triangle PQS \cong \triangle RQS$	4.
5. ∠PQS ≅ ∠RQS	5.

Example 2:

Given : A is the midpoint of \overline{MT}

A is the midpoint of $\overline{\it SR}$

Prove : $\angle M \cong \angle T$

Statements	Reasons
1. A is the midpoint of \overline{MT}	1.
2.	2. Definition of Midpoint
3. A is the midpoint of \overline{SR}	3.
4.	4. Definition of Midpoint
5.	5. Vertical Angles Theorem
6. ΔMAS $≅$ ΔTAR	6.
7.	7.

Example 3:

Given : $\angle MNP \cong \angle OPN$

 $\overline{MN} \cong \overline{OP}$

Prove : $\overline{MP} \cong \overline{NO}$

easons
. Given
. Reflexive Property
. 1

Example 4:

Given : $\overline{ST} \cong \overline{UV}$

 \angle TSV and \angle VUT are right angles

Prove : \angle SVT \cong \angle UTV

Statements	Reasons
1.	1.
2.	2.
3. ΔTSV and ΔVUT are right triangles	3. Def. of right triangle
$4.\overline{TV}\cong\overline{TV}$	4.
5. ΔTSV ≅ ΔVUT	5.
6.	6.

Example 5:

Given : $\overline{AB} \parallel \overline{DE}$

C is the midpoint of \overline{BD}

Prove : $\overline{AC} \cong \overline{EC}$

Statements	Reasons
1. $\overline{AB} \parallel \overline{DE}$	1.
2. ∠CAB ≅ ∠CED	2.
3.	3. Given
4.	4. Definition of Midpoint
5. ∠ACB ≅ ∠ECD	5.
6. \triangle BAC \cong \triangle EDC	6.
$7.\overline{AC} \cong \overline{EC}$	7.