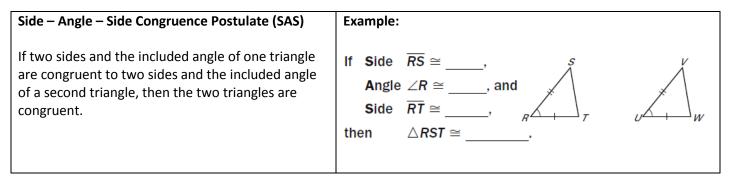
Geometry A Section 4.4 Notes – SAS

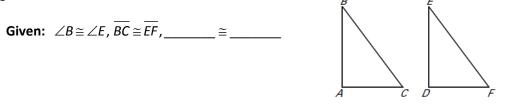
Name :	
Date :	

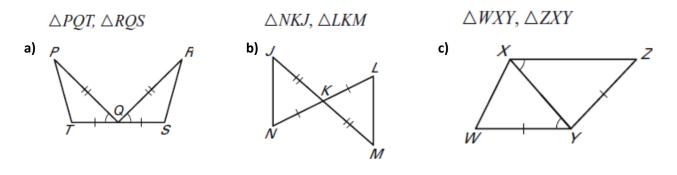
Period :



I can prove triangles congruent using SAS.

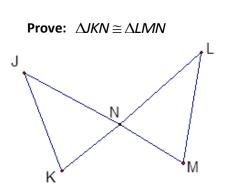
Vocabulary:


> An included angle is an angle made by two lines with a common vertex.



Example 1: Use the SAS Congruence Postulate

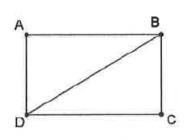
1. State the third congruence that must be given in order to prove $\triangle ABC \cong \triangle DEF$ using the SAS Congruence Postulate.


2. Decide whether enough information is given to prove that the triangles are congruent using the SAS Congruence Postulate.

Reasons to prove angles are congruent:

- •
- •
- •
- •

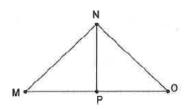
Example 2: Use the SAS Congruence Postulate to write a proof.



Given: $\overline{JN} \cong \overline{LN}, \overline{KN} \cong \overline{MN}$

Statement	Reason
1. $\overline{JN} \cong \overline{LN}$	1.
2. $\overline{KN} \cong \overline{MN}$	2.
3.	3.
4. $\Delta JKN \cong \Delta LMN$	4.

Given: $\overline{AD} \cong \overline{CB}$, $\overline{AD} \parallel \overline{CB}$



Statements	Reasons
1. $\overline{AD} \cong \overline{CB}$	1.
2. $\overline{AD} \parallel \overline{CB}$	2.
3.	3.
4.	4.
5. $\Delta ABD \cong \Delta CDB$	5.

Given: \overline{NP} bisects $\angle MNO$, $\overline{MN} \cong \overline{ON}$

Prove: $\Delta MNP \cong \Delta ONP$

Statements	Reasons
1. \overline{NP} bisects $\angle MNO$	1.
2.	2.
3. $\overline{MN} \cong \overline{ON}$	3.
4.	4.
5. $\Delta MNP \cong \Delta ONP$	5.