4.4: Prove Triangles Congruent by H-L

Date:

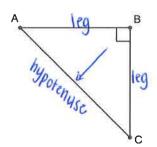
I can prove triangles congruent using H-L

Vocabulary:

In a right triangle, the side opposite the right angle is called the ____hupotenuse_

In right triangle ABC, the hypotenuse is

The legs are ______ and _____ 60

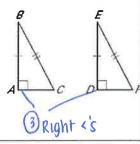


There is a special method for proving right triangles are congruent. This method only works for right triangles!

Hypotenuse - Leg Theorem (H-L)

If the hypotenuse and leg of one right triangle are congruent to the hypotenuse and leg of a second right triangle, then the two triangles are congruent. Example:

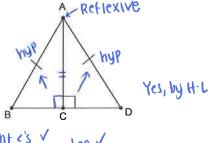
If Hypotenuse $\overline{BC} \cong \overline{EF}$ and $\stackrel{(2)}{\text{Leg}} \overline{AB} \cong \stackrel{\overline{DE}}{\overline{DE}}$ in right triangles $\triangle ABC$ and $\triangle DEF$, then AABC ≅ DEF by H-L



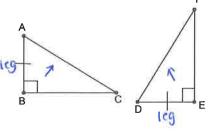
Example 1: Using H-L to identify congruent triangles

Can you prove the following triangles are congruent? Explain.

a.



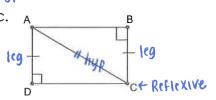
b.



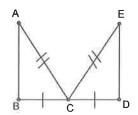
hyp : not marked

right <'s V Leg V

hyp



d.



not enough info to prove ≌

right <'s: not marked hyp : If no right <, no hyp

not enough in to to prove =

right is V

YES, AADC & ABC by HL

When writing a proof using H-L, it is important that you state the following three things in your explanation:

O That the two triangles are right triangles.

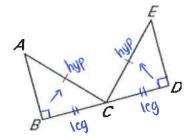
One pair of legs is congruent.

O The two hypotenuse are congruent.

Example 2: Proofs involving H-L

a) Given: $\overline{AC} \cong \overline{EC}$; $\overline{AB} \perp \overline{BD}$; $\overline{ED} \perp \overline{BD}$; \overline{AC} is a bisector of \overline{BD}

Prove: $\triangle ABC \cong \triangle EDC$



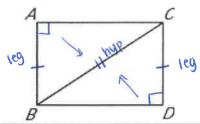
Statements	Reasons
1. $\overline{AC} \cong \overline{EC}$	1. Given
2. $\overline{AB} \perp \overline{BD}; \overline{ED} \perp \overline{BD}$	2. Given
3. <band <'s<="" <d="" are="" right="" th=""><th>3. Det of 1 lines</th></band>	3. Det of 1 lines
4. DABC : DEDC are right D's	4. befor right D's
5. \overline{AC} is a bisector of \overline{BD}	5. Given
6. BC ≅	6. Def of segment bisector
7. Δ <i>ABC</i> ≅ Δ <i>EDC</i>	7. H-L

Right <'s :

hyp://

b) Given: $\overline{AB} \cong \overline{DC}$; $\overline{BA} \perp \overline{AC}$; $\overline{CD} \perp \overline{DB}$

Prove: $\triangle ABC \cong \triangle DCB$

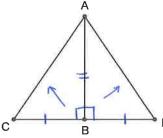


Statements	Reasons	
1. \overline{AB} ≅ \overline{DC}	1. Given	
2. $\overline{BA} \perp \overline{AC}; \overline{CD} \perp \overline{DB}$	2. Given	
3. ∠A and ∠D are right <'s	3. Def of 1 lines	
4. ΔABC and ΔEDC are right Δ's	4. Def of right D's	
5. $\overline{CB} \cong \overline{CB}$	5. Reflex We Prop	
6. $\triangle ABC \cong \triangle DCB$	6. HL	right2's: V

Does a right angle always mean we will use H-L? Let's see!

Given: \overline{AB} is perpendicular bisector of \overline{CD}

Prove: $\triangle ABC \cong \triangle ABD$



Statements	Reasons
1. \overline{AB} is perpendicular bisector of \overline{CD}	1. Given
2. <abc <'s<="" =<abd="" are="" right="" th=""><th>2. definition of perpendicular lines</th></abc>	2. definition of perpendicular lines
3. ∠ABC≅∠ABD	3. all right angles are =
4. $\overline{BC} \cong \underline{\overline{bb}}$	4. Def of 1 bisector
5. <i>AB</i> ≅ <i>AB</i>	5. Reflexive prop
6. ΔABC ≅ ΔABD	6. SAS

hyp: not marked } cant use HL