4.4: Prove Triangles Congruent by H-L Date: I can prove triangles congruent using H-L ## Vocabulary: In a right triangle, the side opposite the right angle is called the ____hupotenuse_ In right triangle ABC, the hypotenuse is The legs are ______ and _____ 60 There is a special method for proving right triangles are congruent. This method only works for right triangles! ## Hypotenuse - Leg Theorem (H-L) If the hypotenuse and leg of one right triangle are congruent to the hypotenuse and leg of a second right triangle, then the two triangles are congruent. Example: If Hypotenuse $\overline{BC} \cong \overline{EF}$ and $\stackrel{(2)}{\text{Leg}} \overline{AB} \cong \stackrel{\overline{DE}}{\overline{DE}}$ in right triangles $\triangle ABC$ and $\triangle DEF$, then AABC ≅ DEF by H-L ## Example 1: Using H-L to identify congruent triangles Can you prove the following triangles are congruent? Explain. a. b. hyp : not marked right <'s V Leg V hyp d. not enough info to prove ≌ right <'s: not marked hyp : If no right <, no hyp not enough in to to prove = right is V YES, AADC & ABC by HL When writing a proof using H-L, it is important that you state the following three things in your explanation: O That the two triangles are right triangles. One pair of legs is congruent. O The two hypotenuse are congruent. ## Example 2: Proofs involving H-L a) Given: $\overline{AC} \cong \overline{EC}$; $\overline{AB} \perp \overline{BD}$; $\overline{ED} \perp \overline{BD}$; \overline{AC} is a bisector of \overline{BD} **Prove:** $\triangle ABC \cong \triangle EDC$ | Statements | Reasons | |--|----------------------------| | 1. $\overline{AC} \cong \overline{EC}$ | 1. Given | | 2. $\overline{AB} \perp \overline{BD}; \overline{ED} \perp \overline{BD}$ | 2. Given | | 3. <band <'s<="" <d="" are="" right="" th=""><th>3. Det of 1 lines</th></band> | 3. Det of 1 lines | | 4. DABC : DEDC are right D's | 4. befor right D's | | 5. \overline{AC} is a bisector of \overline{BD} | 5. Given | | 6. BC ≅ | 6. Def of segment bisector | | 7. Δ <i>ABC</i> ≅ Δ <i>EDC</i> | 7. H-L | Right <'s : hyp:// b) Given: $\overline{AB} \cong \overline{DC}$; $\overline{BA} \perp \overline{AC}$; $\overline{CD} \perp \overline{DB}$ **Prove:** $\triangle ABC \cong \triangle DCB$ | Statements | Reasons | | |--|---------------------|-------------| | 1. \overline{AB} ≅ \overline{DC} | 1. Given | | | 2. $\overline{BA} \perp \overline{AC}; \overline{CD} \perp \overline{DB}$ | 2. Given | | | 3. ∠A and ∠D are right <'s | 3. Def of 1 lines | | | 4. ΔABC and ΔEDC are right Δ's | 4. Def of right D's | | | 5. $\overline{CB} \cong \overline{CB}$ | 5. Reflex We Prop | | | 6. $\triangle ABC \cong \triangle DCB$ | 6. HL | right2's: V | Does a right angle always mean we will use H-L? Let's see! **Given:** \overline{AB} is perpendicular bisector of \overline{CD} Prove: $\triangle ABC \cong \triangle ABD$ | Statements | Reasons | |--|--------------------------------------| | 1. \overline{AB} is perpendicular bisector of \overline{CD} | 1. Given | | 2. <abc <'s<="" =<abd="" are="" right="" th=""><th>2. definition of perpendicular lines</th></abc> | 2. definition of perpendicular lines | | 3. ∠ABC≅∠ABD | 3. all right angles are = | | 4. $\overline{BC} \cong \underline{\overline{bb}}$ | 4. Def of 1 bisector | | 5. <i>AB</i> ≅ <i>AB</i> | 5. Reflexive prop | | 6. ΔABC ≅ ΔABD | 6. SAS | hyp: not marked } cant use HL