Geometry A

4.4: Prove Triangles Congruent by H-L

Name: ______ Date: ______ Period: _____

I can prove triangles congruent using H-L

Vocabulary:

In a right triangle, the side opposite the right angle is called the ______.

In a right triangle, the sides that form the right angle are called the ______.

In right triangle <i>ABC</i> , the hypotenuse is	A B
The legs are and	
	, c

There is a special method for proving right triangles are congruent. This method only works for right triangles!

Hypotenuse – Leg Theorem (H-L)	Example:	В	E
If the hypotenuse and leg of one right triangle are congruent to the hypotenuse and leg of a second right triangle, then the two triangles are congruent.	If Hypotenuse $\overline{BC} \cong$ and Leg $\overline{AB} \cong$ in right triangles $\triangle ABC$ and $\triangle DEF$, then A $\triangle ABC \cong$		

Example 1: Using H-L to identify congruent triangles

Can you prove the following triangles are congruent? Explain.

d.

When writing a proof using H-L, it is important that you state the following three things in your explanation:

- That the two triangles are right triangles.
- One pair of legs is congruent.
- \circ $\;$ The two hypotenuse are congruent.

Example 2: Proofs involving H-L

a) **Given:** $\overline{AC} \cong \overline{EC}$; $\overline{AB} \perp \overline{BD}$; $\overline{ED} \perp \overline{BD}$; \overline{AC} is a bisector of \overline{BD}

Prove: $\triangle ABC \cong \triangle EDC$

Statements	Reasons
1. $\overline{AC} \cong \overline{EC}$	1.
2. $\overline{AB} \perp \overline{BD}; \overline{ED} \perp \overline{BD}$	2.
3.	3.
4.	4.
5. \overline{AC} is a bisector of \overline{BD}	5.
6. <i>BC</i> ≅	6.
7. $\triangle ABC \cong \triangle EDC$	7.

b) Given: $\overline{AB} \cong \overline{DC}$; $\overline{BA} \perp \overline{AC}$; $\overline{CD} \perp \overline{DB}$ Prove: $\triangle ABC \cong \triangle DCB$

	B D
Statements	Reasons
1. $\overline{AB} \cong \overline{DC}$	1.
2. $\overline{BA} \perp \overline{AC}; \overline{CD} \perp \overline{DB}$	2.
3. $\angle A$ and $\angle D$ are	3.
4. $\triangle ABC and \triangle EDC$ are	4.
5. $\overline{CB} \cong \overline{CB}$	5.
6. $\triangle ABC \cong \triangle DCB$	6.

Does a right angle always mean we will use H-L? Let's see!

Given: \overline{AB} is perpendicular bisector of \overline{CD} **Prove:** $\triangle ABC \cong \triangle ABD$

Statements	Reasons
1. \overline{AB} is perpendicular bisector of \overline{CD}	1.
2.	2. definition of perpendicular lines
3. ∠ABC≅∠ABD	3.
4. <i>BC</i> ≅	4.
5. $\overline{AB} \cong \overline{AB}$	5.
6. $\triangle ABC \cong \triangle ABD$	6.

Geometry A Homework: H-L

Name:	
Date:	Period:

Is it possible to prove that the triangles are congruent? If so, state the postulate or theorem you would use.

State the third congruence that is needed to prove that $\triangle ABC \cong \triangle XYZ$ using the given postulate or theorem.

7. GIVEN: $\angle B \cong \angle E, \overline{BC} \cong \overline{EF}, \underline{\qquad} \cong \underline{\qquad}$ Use the SAS Congruence Theorem

8. GIVEN: $\overline{AB} \cong \overline{DE}$, $\overline{BC} \cong \overline{EF}$, _____ \cong _____ Use the SSS Congruence Postulate

9. GIVEN: $\overrightarrow{AC} \cong \overrightarrow{DF}$, $\angle A$ is a right angle and $\angle A \cong \angle D$, $\underline{\qquad} \cong \underline{\qquad}$

Use the H-L Congruence Theorem

10. Complete the proof.	\bigwedge^{o}
Given: $\overline{OM} \perp \overline{LN}$, $\overline{ML} \cong \overline{MN}$	
Prove: $\triangle OML \cong \triangle OMN$	
Statements	Reasons
$1\overline{OM} \perp \overline{LN}$	1.
2. $\angle LMO$ and $\angle NMO$ are right angles	2. def. of
3. ΔLMO and ΔNMO are right triangles	3. Def. of
4. $\overline{ML} \cong \overline{MN}$	4.
5.	5. Reflexive Property
3. $\Delta OML \cong \Delta OMN$	6.

11. Given: \angle JKL & \angle MLK are right angles

 $\overline{JL} \cong \overline{MK}$ **Prove:** $\Delta JKL \cong \Delta MLK$

Statements	Reasons
1. ∠ <i>JKL</i> & ∠ <i>MLK</i> are right ∠s	1.
2. $\Delta JKL and \Delta MLK$ are	2.
3. $\overline{JL} \cong \overline{MK}$	3.
$4. \overline{KL} \cong \overline{KL}$	4.
5. $\Delta JKL \cong \Delta MLK$	5.

12. Given: $\overline{AB} \cong \overline{DB}$, $\overline{BC} \perp \overline{AD}$

Prove: $\triangle ABC \cong \triangle DBC$

Statements	Reasons
1. $\overline{AB} \cong \overline{DB}$	1.
2. $\overline{BC} \perp \overline{AD}$	2.
3. ∠BCA and ∠BCD are	3.
4. ΔABC and ΔDBC are	4.
5. $\overline{CB} \cong \overline{CB}$	5.
$6. \Delta ABC \cong \Delta DCB$	6.

Answer Key:

- 1. Yes, by SAS
- 2. Yes, by AAS
- 3. Yes, by SAS
- 4. Yes, by SAS
- 5. Yes, by SAS
- 6. Yes, by H-L
- 7. $\overline{BA} \cong \overline{ED}$
- 8. $\overline{AC} \cong \overline{DF}$
- 9. $\overline{BC} \cong \overline{EF}$
- 10. 1) Given 2) Def of Perpendicular Lines 3) Def of right triangles 4) $\overline{OM} \cong \overline{OM}$ 5) SAS
- 11. 1) Given 2) Right triangles; Def of right triangles 3) Given 4) Reflexive Property 5) H-L
- 12. 1) Given 2) Given 3) Right angles; Def of perpendicular lines 4) Right triangles; Def of right triangles5) Reflexive Property 6) H-L