Geometry A
4.4: Prove Triangles Congruent by H-L

Name: \qquad
Date: \qquad Period: \qquad

- I can prove triangles congruent using H-L

Vocabulary:

In a right triangle, the side opposite the right angle is called the \qquad -

In a right triangle, the sides that form the right angle are called the \qquad .

In right triangle $A B C$, the hypotenuse is \qquad .

The legs are \qquad and \qquad .

There is a special method for proving right triangles are congruent. This method only works for right triangles!

Hypotenuse - Leg Theorem (H-L)	Example:
If the hypotenuse and leg of one right triangle are	
congruent to the hypotenuse and leg of a second right triangle, then the two triangles are congruent.	If Hypotenuse $\overline{B C} \cong$ and Leg $\overline{A B} \cong \ldots$ $\triangle A B C$ and $\triangle D E F$, in right triangles $\triangle A B C \cong \ldots$

Example 1: Using H-L to identify congruent triangles

Can you prove the following triangles are congruent? Explain.
a.

b.

C.

d.

When writing a proof using H-L, it is important that you state the following three things in your explanation:

- That the two triangles are right triangles.
- One pair of legs is congruent.
- The two hypotenuse are congruent.

Example 2: Proofs involving H-L

a) Given: $\overline{A C} \cong \overline{E C} ; \overline{A B} \perp \overline{B D} ; \overline{E D} \perp \overline{B D}$;
$\overline{A C}$ is a bisector of $\overline{B D}$
Prove: $\triangle A B C \cong \triangle E D C$

Statements	Reasons
1. $\overline{A C} \cong \overline{E C}$	1.
2. $\overline{A B} \perp \overline{B D} ; \overline{E D} \perp \overline{B D}$	2.
3.	3.
4.	4.
5. $\overline{A C}$ is a bisector of $\overline{B D}$	5.
6. $\overline{B C} \cong$	6.
7. $\triangle A B C \cong \triangle E D C$	7.

b) Given: $\overline{A B} \cong \overline{D C} ; \overline{B A} \perp \overline{A C} ; \overline{C D} \perp \overline{D B}$ Prove: $\triangle A B C \cong \triangle D C B$

Statements	Reasons
1. $\overline{A B} \cong \overline{D C}$	2.
2. $\overline{B A} \perp \overline{A C} ; \overline{C D} \perp \overline{D B}$	3.
3. $\angle A$ and $\angle D$ are	4.
4. $\overline{\triangle A B C \text { and } \triangle E D C \text { are }}$	5.
5. $\overline{\overline{C B} \cong \overline{C B}}$	6.
6. $\triangle A B C \cong \triangle D C B$	

Does a right angle always mean we will use H-L? Let's see!

Given: $\overline{A B}$ is perpendicular bisector of $\overline{C D}$
Prove: $\triangle A B C \cong \triangle A B D$

Statements	Reasons
1. $\overline{A B}$ is perpendicular bisector of $\overline{C D}$	1.
2.	2. definition of perpendicular lines
3. $\angle A B C \cong \angle A B D$	3.
4. $\overline{B C} \cong$	4.
5. $\overline{A B} \cong \overline{A B}$	5.
6. $\triangle A B C \cong \triangle A B D$	6.

\qquad
\qquad Period: \qquad

Is it possible to prove that the triangles are congruent? If so, state the postulate or theorem you would use.
1.

2.

3.

4.

5.

6.

State the third congruence that is needed to prove that $\triangle A B C \cong \triangle X Y Z$ using the given postulate or theorem.
7. GIVEN: $\angle B \cong \angle E, \overline{B C} \cong \overline{E F}$, \qquad \cong \qquad
Use the SAS Congruence Theorem
8. GIVEN: $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}$, \qquad \cong \qquad
Use the SSS Congruence Postulate

9. GIVEN: $\overline{A C} \cong \overline{D F}, \angle A$ is a right angle and
$\angle A \cong \angle D$, \qquad \cong \qquad
Use the H-L Congruence Theorem
10. Complete the proof.

Given: $\overline{O M} \perp \overline{L N}, \overline{M L} \cong \overline{M N}$
Prove: $\triangle O M L \cong \triangle O M N$

Statements	Reasons
$1 \overline{O M} \perp \overline{L N}$	1.
$2 . \angle L M O$ and $\angle N M O$ are right angles	$2 . \quad$ def. of
$3 . \quad \triangle L M O$ and $\triangle N M O$ are right triangles	$3 . \quad$ Def. of
$4 . \overline{M L} \cong \overline{M N}$	4.
5.	5. Reflexive Property
$3 . \quad \triangle O M L \cong \triangle O M N$	6.

11. Given: $\angle \mathrm{JKL} \& \angle \mathrm{MLK}$ are right angles $\overline{J L} \cong \overline{M K}$
Prove: $\triangle N K \cong \triangle M L K$

Statements	Reasons
1. $\quad \triangle J K L \& \angle M L K$ are right $\angle \mathrm{s}$	1.
2. $\quad \triangle K L$ and $\triangle M L K$ are	2.
3. $\overline{\overline{J L} \cong \overline{M K}}$	3.
4. $\overline{K L} \cong \overline{K L}$	4.
5. $\quad \Delta K L \cong \triangle M L K$	5.

12. Given: $\overline{A B} \cong \overline{D B}, \overline{B C} \perp \overline{A D}$

Prove: $\triangle A B C \cong \triangle D B C$

Statements	Reasons
1. $\overline{A B} \cong \overline{D B}$	1.
2. $\overline{B C} \perp \overline{A D}$	2.
3. $\angle B C A$ and $\angle B C D$ are	4.
4. $\overline{\triangle A B C \text { and } \triangle D B C \text { are }}$	5.
5. $\overline{\overline{C B} \cong \overline{C B}}$	6.

Answer Key:

1. Yes, by SAS
2. Yes, by AAS
3. Yes, by SAS
4. Yes, by SAS
5. Yes, by SAS
6. Yes, by H-L
7. $\overline{B A} \cong \overline{E D}$
8. $\overline{A C} \cong \overline{D F}$
9. $\overline{B C} \cong \overline{E F}$
10. 11) Given 2) Def of Perpendicular Lines 3) Def of right triangles 4) $\overline{O M} \cong \overline{O M}$ 5) SAS
1. 2) Given 2) Right triangles; Def of right triangles 3) Given 4) Reflexive Property 5) H-L
1. 2) Given 2) Given 3) Right angles; Def of perpendicular lines 4) Right triangles; Def of right triangles 5) Reflexive Property 6) H-L
