Geometry A
3.3: Proving Lines Parallel

Name: \qquad
Date: \qquad Period: \qquad

- I can prove lines are parallel.
$>$ I can use the corresponding angles converse
$>$ I can use the alternate interior angles converse.
$>$ I can use the alternate exterior angles converse.
$>$ I can use the consecutive interior angles converse.

You may have noticed that the postulates and theorems that we've studied so far have been written in the form "If p, then q." The converse of such a statement switches the order of the parts of the statement and has the form "If q, then p. ." The converse of a postulate or theorem may or may not be true, just as the converse of a mathematical statement may or may not be true.

Mathematical Example:

Statement	Write the converse of the Statement	Is the converse always true?
If $x=2$, then $3 x=6$		
If $x=2$ and $y=3$, then $x+y=5$		

The converse of the Corresponding Angles Postulate is accepted as true, and this makes it possible to prove that the converses of the Alternate Interior Angle Theorem, Alternate Exterior Angle Theorem, and Consecutive Interior Angle Theorem are also true.

Converse	In words...	Diagram	
Corresponding Angles Converse	If two lines are cut by a transversal so that corresponding angles are \qquad then the lines are \qquad	 If $\angle 1 \cong \angle 3$, then $q \\| r$	
Alternate Interior Angles Converse	If two lines are cut by a transversal so that alternate interior angles are \qquad , then the lines are \qquad	If \qquad , then	
Alternate Exterior Angles Converse	If two lines are cut by a transversal so that alternate exterior angles are \qquad , then the lines are \qquad	If \qquad , then \qquad	
Consecutive Interior Angles Converse	If two lines are cut by a transversal so that consecutive interior angles are \qquad , then the lines are \qquad	If \qquad , then	

For questions $1-4$, use the given information to explain why $m \| n$.

1. $\angle 1 \cong \angle 7$ \qquad
2. $m \angle 4+m \angle 5=180^{\circ}$ \qquad
3. $\angle 5 \cong \angle 3$ \qquad
4. $\angle 8 \cong \angle 4$ \qquad
5. If $m \angle 1=47^{\circ}$ and $m \angle 5=49^{\circ}$, are the lines parallel? Explain.
6. If $m \angle 3=119^{\circ}$, what does the measure of $\angle 6$ need to be to prove $m \| n$?

Example 1: Find value of x that makes line parallel.

a) Find the value of x that makes $m \| n$. Explain your reasoning.

b) Find the value of x that makes $p \| q$. Explain your reasoning.

c) Find the value of x that makes $p \| q$. Explain your reasoning.

d) Find the value of x that makes $p \| q$. Explain your reasoning.

