Name \qquad
Date \qquad Period: \qquad

Is it possible to prove that lines p and q are parallel? If so, state the postulate or theorem you would use.
1.

3.

Find the value of x that makes $m \| n$.
4.

5.

6.

7.

8.

9.

In Exercises 10-12, choose the word that best completes the statement.
10. If two lines are cut by a transversal so the alternate interior angles are (congruent, supplementary, complementary), then the lines are parallel.
11. If two lines are cut by a transversal so the consecutive interior angles are (congruent, supplementary, complementary), then the lines are parallel.
12. If two lines are cut by a transversal so the corresponding angles are (congruent, supplementary, complementary), then the lines are parallel.

In Exercises 13-17, use the diagram and the given information to determine if $m\|n, p\| q$, or neither.
13. $\angle 3 \cong \angle 10$
14. $\angle 1 \cong \angle 13$
15. $\angle 4 \cong \angle 11$
16. $\angle 12 \cong \angle 13$
17. $\angle 3 \cong \angle 14$

18. Two workers paint parallel lines for angled parking spaces. One worker paints a line so that $m \angle 1=65^{\circ}$. The other worker paints a line so that $m \angle 2=65^{\circ}$. Are the lines parallel? Explain.

19. A bedroom has sloping ceilings as shown. Mark is hanging a shelf below a rafter. If $m \angle 1=(8 x-1)^{\circ}$ and $m \angle 2=(6 x+7)^{\circ}$, find the value of x that makes the rafter and shelf parallel. Justify your reasoning.

Answer Key

1. yes; Consecutive Interior Angles Converse
2. yes; Alternate Interior Angles Converse
3. no
4. 40
5. 109
6. 115
7. 22
8. 5
9. 80
10. congruent
11. supplementary
12. congruent
13. $m \| n$
14. neither
15. neither
16. $p \| q$
17. neither
18. yes, by the alternate exterior angles converse the lines will be parallel.
19. If $x=4$, then $m \angle 1=m \angle 2$. The rafter and shelf will be parallel by Corresponding Angles Converse.
