Name:	Key		
Date	J	Pariod	

We have been progressing our measurements through different dimensions. As we progress through the dimensions, our units of measurement change.

Number of dimensions	What we measure	Example
1	Lengths of segments, perimeters, distances, and circumferences	1 unit
2	Area, which is the number of square units within a shape	1 unit²
3	Volume, which is the number of unit cubes that fill the space within a shape	1 unit

Volume of Prisms

The volume (V) of a Prism is _____V = Bh Where B = area of the base , h = height of the prism V = Bh

Example 1: Find the volume of the right trapezoidal prism

Example 2: Find the volume of a square prism that has a base edge length of 5 ft and a height of 12 ft.

Base

5H

5H

$$B = S^{2}$$
 $B = (6)^{6}$
 $B = 26$
 $B = 12$

Example 3: The volume of the wedge of cheese is 45 cm 3 . Find the value of x. Assume the base is an

x= a.1 cm

Find height of Abase:

Volume of Cylinders

Example 4: The volume of a right cylinder is 684π in^3 and the height is 18 in. Find the radius.

$$V = \pi r^2 h$$

$$684 \pi = \pi (r^2)(18)$$

$$\frac{684 \pi}{18 \pi} = \frac{18}{18 \pi} r^2 \leftarrow \text{rearranged the terms so } 18\pi \text{ was before } r^2$$

$$\sqrt{38} = \frac{1}{38} r^2$$

$$\sqrt{r^2 + 6.2 \text{ in}}$$

Example 5: In machining, a drill hollows out the center of the cylinder. What is the volume of the object below?

Cavalieri's Principle

If two solids have the same height and the same cross-sectional area at every level, then they have the same volume.

* use the same volume formulas that we used in above examples; the volume doesn't change

Example 6: Find the volume of the following.

a) Oblique Prism

b) Oblique cylinder

$$V = \pi r^2 h$$

$$V = \pi(8)^{2}(30)$$