

- I can name, measure, and classify angles.
- I can use the Angle Addition Postulate to find measure of angles.
- I can use angle postulates to identify congruent angles.

An *angle* is a figure formed by two different rays that have the same initial point. The two rays are the *sides* of the angle. The initial point is called the *vertex* of the angle.

 \rightarrow In the diagram to the right, the sides are $\frac{\overrightarrow{kl}}{}$ and $\frac{\overrightarrow{kl}}{}$.

→The vertex is Point K .

→The name of the angle is ∠JKL, ∠LKJ, ∠K

Example 1: Naming Angles

Name the three angles in the diagram below.

ABC or 4CBA

4CBD or 4DBC

LABD or LOBA

Example 2: Classifying and Measuring Angles

Angles can be classified as acute, right, obtuse, or straight.

$\stackrel{\wedge}{\longrightarrow}$	8 1		<> D
Acute Angle	Right Angle	Obtuse Angle	Straight Angle
<	m∠B= <u>90°</u>	91° <m∠c 179°<="" <="" td=""><td>m∠D=<u>l</u>80°</td></m∠c>	m∠D= <u>l</u> 80°

To measure an angle, we use a protractor to approximate its value using units called degrees.

Let's find the measure of some of the angles in the diagram above.

$$m\angle AGB = 30^{\circ}$$
 $m\angle DGE = 68^{\circ}$ $m\angle CGD = 19^{\circ}$ $m\angle AGE = 142^{\circ}$ detute; has to be $142^{\circ}-74^{\circ}$ $14^{\circ}-65^{\circ}$ obtute; has to be $142^{\circ}-74^{\circ}$ $14^{\circ}-65^{\circ}$ obtute; has to be $142^{\circ}-74^{\circ}$ $14^{\circ}-65^{\circ}$ $142^{\circ}-74^{\circ}$ obtute; has to be $142^{\circ}-74^{\circ}$

Example 3: Angle Addition Postulate

a. If $m\angle RSP = 20^{\circ}$, and $m\angle PST = 32^{\circ}$, find $m\angle RST = 32^{\circ}$.

b. If $m\angle RST = 86^{\circ}$, and $m\angle PST = 32^{\circ}$, find $m\angle RSP$.

c. If $m\angle RST = 72^\circ$, $m\angle PST = (2x+4)^\circ$, and $m\angle RSP = (3x-2)^\circ$, find the value of x and the measures of the angles.

Example 4: Adjacent Angles

Adjacent angles are angles that have a common <u>Vertex</u> and share a common <u>Slde</u> but no common interior points.

<ABC : < CBb are adjacent with common side BC

Example 5: Congruent Angles

Congruent angles are angles that have the same measure.

Angle measures are equal.

"is equal to"

Angles are congruent.

"is congruent to"

a. If $\angle CAB \cong \angle FDE$, $m\angle CAB = (2x+3)^o$, and $m\angle FDE = (3x-17)^o$, solve for x and find the measure of each angle.

2x+3 = 3x-17 (If angles are =, their measures are =)

m < CAB = 2(20) +3

a. In the diagram, \overrightarrow{JH} bisects $\angle IJG$, and suppose $m\angle GJH = 47^{\circ}$. Find $m\angle IJG$.

Example 6: Double Angle Measure

b. In the diagram, \overrightarrow{JH} bisects $\angle IJG$, and suppose $m\angle GJI = 92^{\circ}$. Find $m\angle HJI$.

Divide 92 by 2 to get the 2 equal angles inside

$$\frac{9a}{2} = 46$$