\qquad
\qquad Period: \qquad
Learning - I can name, measure, and classify angles.

- I can use the Angle Addition Postulate to find measure of angles.
targets - I can use angle postulates to identify congruent angles.

An angle is a figure formed by two different rays that have the same initial point. The two rays are the sides of the angle. The initial point is called the vertex of the angle.
\rightarrow In the diagram to the right, the sides are \qquad and \qquad .
\rightarrow The vertex is \qquad .
\rightarrow The name of the angle is \qquad .

Example 1: Naming Angles

Name the three angles in the diagram below.
\qquad or \qquad
\qquad or \qquad
\qquad or \qquad

Example 2: Classifying and Measuring Angles

Angles can be classified as acute, right, obtuse, or straight.

Acute Angle	Right Angle	Obtuse Angle	Straight Angle
$<m \angle A \ll$	$m \angle B=$	$<m \angle C<$	$m \angle D=$

To measure an angle, we use a protractor to approximate its value using units called degrees.

Let's find the measure of some of the angles in the diagram above.
$m \angle A G B=$ \qquad $m \angle D G E=$ \qquad $m \angle C G D=$ $m \angle A G E=$ \qquad

Example 3: Angle Addition Postulate

Angle Addition Postulate:

If P is in the interior of $\angle R S T$, then
$m \angle$ \qquad $+m \angle$ \qquad $=m \angle$ \qquad .

a. If $m \angle R S P=20^{\circ}$, and $m \angle P S T=32^{\circ}$, find $m \angle R S T$.
b. If $m \angle R S T=86^{\circ}$, and $m \angle P S T=32^{\circ}$, find $m \angle R S P$.
c. If $m \angle R S T=72^{\circ}, m \angle P S T=(2 x+4)^{\circ}$, and $m \angle R S P=(3 x-2)^{\circ}$, find the value of x and the measures of the angles.

Example 4: Adjacent Angles

Adjacent angles are angles that have a common \qquad and share a common \qquad but no common interior points.

Example 5: Congruent Angles

Congruent angles are angles that have the same measure.

Angle measures are equal.
Angles are congruent.
"is equal to" "is congruent to"
a. If $\angle C A B \cong \angle F D E, m \angle C A B=(2 x+3)^{\circ}$, and $m \angle F D E=(3 x-17)^{\circ}$, solve for x and find the measure of each angle.

Example 6: Double Angle Measure

a. In the diagram, $\overrightarrow{J H}$ bisects $\angle I J G$, and suppose $m \angle G J H=47^{\circ}$. Find $m \angle I J G$.

b. In the diagram, $\overrightarrow{J H}$ bisects $\angle I J G$, and suppose $m \angle G J I=92^{\circ}$. Find $m \angle H J I$.

