
Geometry A Section 1.4 Notes: Measure and Classify Angles Name: ______ Period: _____

LEARNING • I can name, measure, and classify angles.

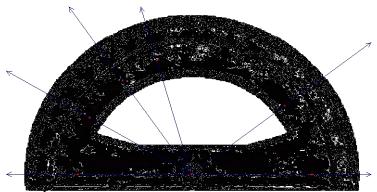
- I can use the Angle Addition Postulate to find measure of angles.
- I can use angle postulates to identify congruent angles.

An *angle* is a figure formed by two different rays that have the same initial point. The two rays are the *sides* of the angle. The initial point is called the *vertex* of the angle.

ightarrow In the diagram to the right, the sides are and	J
\rightarrow The vertex is	К
\rightarrow The name of the angle is	

Example 1: Naming Angles

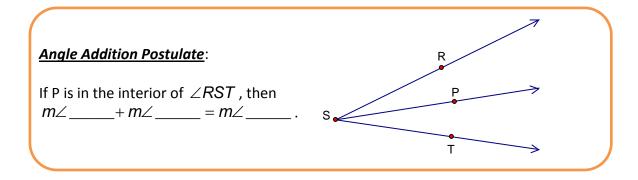
Name the three angles in the diagram below.



Example 2: Classifying and Measuring Angles

Angles can be classified as acute, right, obtuse, or straight.

Acute Angle	Right Angle	Obtuse Angle	Straight Angle
<m∠a <<="" td=""><td>m∠B=</td><td><m∠c <<="" td=""><td>m∠D=</td></m∠c></td></m∠a>	m∠B=	<m∠c <<="" td=""><td>m∠D=</td></m∠c>	m∠D=


To measure an angle, we use a protractor to approximate its value using units called degrees.

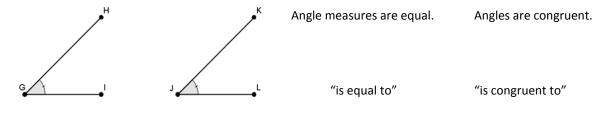
Let's find the measure of some of the angles in the diagram above.

 $m\angle AGB = _ m\angle DGE = _ m\angle CGD = _ m\angle AGE = _$

Example 3: Angle Addition Postulate

a. If $m \angle RSP = 20^\circ$, and $m \angle PST = 32^\circ$, find $m \angle RST$.

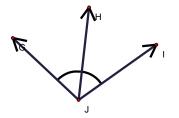
b. If $m \angle RST = 86^\circ$, and $m \angle PST = 32^\circ$, find $m \angle RSP$.


c. If $m \angle RST = 72^\circ$, $m \angle PST = (2x+4)^\circ$, and $m \angle RSP = (3x-2)^\circ$, find the value of x and the measures of the angles.

Example 4: Adjacent Angles

Adjacent angles are angles that have a common _____ and share a common _____ but no common interior points.

Example 5: Congruent Angles


Congruent angles are angles that have the same measure.

a. If $\angle CAB \cong \angle FDE$, $m \angle CAB = (2x+3)^{\circ}$, and $m \angle FDE = (3x-17)^{\circ}$, solve for x and find the measure of each angle.

Example 6: Double Angle Measure

a. In the diagram, \overrightarrow{JH} bisects $\angle IJG$, and suppose $m \angle GJH = 47^{\circ}$. Find $m \angle IJG$.

b. In the diagram, \overrightarrow{JH} bisects $\angle IJG$, and suppose $m\angle GJI = 92^{\circ}$. Find $m\angle HJI$.