Unit 1 Practice Problems:

- 1. Use the diagram to for the following questions:
 - a. Name all points that are collinear to points P and Q.
 - b. Name a line.
 - c. Name a ray.
 - d. Name a line segment.

2. Use the diagram to find the length of \overline{OQ} where MQ = 30, MN = 5, MN=NO, and OP=PQ.

3. If EF=2x-12, FG=3x-15, and EG=23, find the values of x, EF and FG. The drawing is not to scale.

4. If T is the midpoint of \overline{SU} , find the values of x and SU.

- 5. The endpoints of two segments are given. Find each segment length. Tell whether the segments are congruent. \overline{EF} : E(1,4), F(5,1) and \overline{GH} : G(-3,1), H(1,6)
- 6. Find the midpoint of a segment with endpoints A(-8, 5) and B(-2, 7).

7. In segment \overline{AB} , M is the midpoint. Given A(2, 3) and M(5, 7), find the coordinates of the endpoint B.

8. Given $m\angle WXZ=84^{\circ}$, find $m\angle YXZ$.

9. \overline{AB} bisects $\angle CAD$. Find the value of x.

10. In the figure below, \overline{CE} bisects \angle DCB and \overline{CF} bisects \angle ECB. If m \angle ECF = 4x+7 and m \angle FCB = 7x-20,

a. Solve for x.

b. Determine the measure of ∠DCE.

c. Determine the measure of $\angle DCA$.

11. $\angle 1$ and $\angle 2$ are complementary. If $m \angle 1=27^{\circ}$, what is $m \angle 2$?

12. $\angle 3$ and $\angle 4$ are supplementary. If $m\angle 4=78^{\circ}$, what is $m\angle 3$?

13. Solve for x.

14. Solve for x.

15. Use the diagram. Find the value of x and $m \angle 1$.

16. Please solve for x and y.

Unit 2: Practice Problems

17. Find the value of the variable if m \parallel I, m \angle 1 = 2x + 44 and m \angle 5 = 5x + 38. The diagram is not to scale. Justify your work with a theorem or postulate.

18. If $m \angle 3 = 135^\circ$, then $m \angle 7 =$ _____

Name the angle pair! _____

19. If $m \angle 6 = 60^{\circ}$ and $m \angle 8 = 5x^{\circ}$, then $x = ____$

Name the angle pair! _____

Name the angle pair! _____

Name the angle pair! _____

Name the angle pair! _____

23. Which value of x will make lines I and m parallel?

- 24. What is the slope of the line passing through the points (-8, 1) and (-5, -8)?
- 25. Decide whether the lines with the given equations are perpendicular, parallel, or neither.

$$y = \frac{1}{2}x + 3$$
 and $y = \frac{1}{2}x - 3$

26. Determine whether \overrightarrow{WX} and \overrightarrow{YZ} are parallel, perpendicular, or neither given the following points: W(-2,-1), X(4,1), Y(-2,1) and Z(-5,2).

27. Find the equation of a line which contains the point (2, 5) and is parallel to the line y = 3x + 5.

28. Find the equation of a line which contains the point (4, -5) and is perpendicular to the line y = 2x+3.

29. Given the parallel lines, in the picture, please prove that the $m \angle ABC = 72^{\circ}$.

Statements	Reasons
1. Diagram w/values	1.
2. (3x + 12) + (5x + 8) = 180	2.
3.	3.
4.	4.
5.	5.
6. m∠ABC = 3(20) + 12	6.
7. m∠ABC =	7.

30. Given that $p \mid \mid q$, please solve for x.

Justify **every** step using the same "proof" strategy.

Statements	Reasons
1. Diagram w/values	1.
2.	2.
3.	3.
4.	4.
5.	5.

Unit 3: Practice Problems

31. Classify Δ XYZ according to its angle measures and side lengths.

33. Find the measure of ∠YWR.

32. Classify \triangle RST according to its side lengths and find value of x.

34. Find the measure of $\angle K$.

35. The three angles of a triangle are $(x + 30)^\circ$, $(4x + 30)^\circ$ and $(10x - 30)^\circ$. Classify the triangle by its angle measures.

36. Find the measures of angles A, B, and C.

37.

38.

39. Please find the value of x and all of the side lengths.

40. Please find the value of x and classify by the side lengths.

41. Find the value of x and y, then classify the triangle by its angles.

42. Find the value of x and the perimeter of $\triangle PQR$ if $\triangle PQR$ is an isosceles triangle where $\overline{PQ}\cong \overline{QR}$, PR=x+1, PQ=2x+1, and RQ=3x-8.

For questions #43-46, use \triangle ABC with coordinates A(1,7), B(5,2) and C(0,-2).

- 43. Draw the triangle in the coordinate plane.
- 44. Find the slopes of each side.
- 45. Find the length of each side.

- 46. Prove that \triangle ABC is an isosceles right triangle.
- 47. Use the diagram. Which additional congruence is needed to prove $\triangle ABC \cong \triangle DEF$?
 - a.) By SSS
 - b.) By SAS

48. Given : $\overline{AC} \cong \overline{DB}$, $\overline{AB} \perp \overline{CB}$, $\overline{DC} \perp \overline{BC}$

Prove : $\angle CAB \cong \angle BDC$

Statements	Reasons
1. $\overline{AC} \cong \overline{DB}$, $\overline{AB} \perp \overline{CB}$, $\overline{DC} \perp \overline{BC}$	1. Given
2. ∠CBA and ∠BCD are right angles	2.
3. ΔCBA and ΔBCD are right triangles	3.
4.	4.
5.	5.
6. ∠CAB ≅ ∠BDC	6.

49. Given : A is the midpoint of \overline{BD} , $\overline{BC}\cong \overline{DC}$

Prove : $\triangle ABC \cong \triangle ADC$

Statements	Reasons
1. A is the midpoint of \overline{BD} , $\overline{BC} \cong \overline{DC}$	1.
2.	2. Reflexive Property
3.	3.
$4. \Delta ABC \cong \Delta ADC$	4.

Unit 4 Review: See Unit 4 Test Review Packet

ANSWER KEY

Unit 1 Review:

1. (a)
$$Y, M$$
 (b) Line a, \overrightarrow{XN} , \overrightarrow{NM} , \overrightarrow{RO} , \overrightarrow{PQ} , etc. (c) \overrightarrow{MP} , \overrightarrow{RQ} , \overrightarrow{NM} , \overrightarrow{XN} , etc. (d) \overrightarrow{PN} , \overrightarrow{QR} , \overrightarrow{PX} , etc.

2.
$$OQ = 20$$
 3. $x = 10$, $EF = 8$, $FG = 15$ 4. $x = 5$, $SU = 90$ 5. $EF = 5$, $GH = 6.4$, No

6.
$$(-5, 6)$$
 7. $(8, 11)$ 8. 69° 9. $x = \frac{25}{4}$ 10. $(a) x = 9$ $(b) 86^{\circ}$ $(c) 8^{\circ}$ 11. 63° 12. 102°

13.
$$x = 5$$
 14. $x = 10$ 15. $x = 12.5$, $m \ge 1 = 127^{\circ}$ 16. $x = 21$, $y = 94$

Unit 2 Review:

26. Neither 27.
$$y = 3x - 1$$
 28. $y = -\frac{1}{2}x - 3$

29.

Statements	Reasons
1. Diagram w/values	1. GIVEN
2. $(3x + 12) + (5x + 8) = 180$	2. CONSECUTIVE INTERIOR ANGLES THM
3. 8x + 20 = 180	3. COMBINE LIKE TERMS
4. 8x = 160	4. SUBTRACTION PROPERTY
5. x = 20	5. DIVISION PROPERTY
6. m∠ABC = 3(20) + 12	6. SUBSTITUTION
7. m∠ABC = 72°	7. SIMPLIFICATION/COMBINE LIKE TERMS

30.

Statements	Reasons
1. Diagram w/values	1. GIVEN
2. $2x + 43 = 5x - 47$	2. ALTERNATE INTERIOR ANGLES THM
3. $43 = 3x - 47$	3. SUBTRACTION PROPERTY
4. 90 = 3x	4. ADDITION PROPERTY
5. x = 30	5. DIVISION PROPERTY

Unit 3 Review:

31. Obtuse Isosceles 32. Equilateral, x = 12 33. 56° 34. 80° 35. x = 10, Acute

36. $m \angle A = 103^{\circ}$, $m \angle B = 77^{\circ}$, $m \angle C = 46^{\circ}$ 37. x = 33 38. x = 23 39. x = 5, 16, 16, 18

40. x = 6.75, Equilateral 41. x = 5, y = 9, Acute 42. x = 9, P=48 units 43. Plot points 44. $m_{\overline{AC}} = 9$, $m_{\overline{CB}} = \frac{4}{5}$, $m_{\overline{AB}} = -\frac{5}{4}$ 45. AC = 9.1, AB = 6.4, CB = 6.4

46. Slopes of \overline{AB} and \overline{CB} are opposite reciprocals so there is a right angle, $\overline{AB} \cong \overline{CB}$ so it is isosceles

47. a. $\overline{BC} \cong \overline{EF}$ b. $\angle BAC \cong \angle EDF$

48.

Statements	Reasons
$1. \overline{AC} \cong \overline{DB}$, $\overline{AB} \perp \overline{CB}$, $\overline{DC} \perp \overline{BC}$	1. Given
2. ∠CBA and ∠BCD are right angles	2. DEFINITION OF PERPENDICULAR LINES
3. \triangle CBA and \triangle BCD are right triangles	3. DEFINITION OF RIGHT TRIANGLES
$3. \overline{BC} \cong \overline{BC}$	3. REFLEXIVE PROPERTY
$4.\Delta ABC \cong \Delta DCB$	4. HL
5. ∠CAB ≅ ∠BDC	5. CPCTC

49.

Statements	Reasons
1. A is the midpoint of \overline{BD} , $\overline{BC} \cong \overline{DC}$	1. GIVEN
$2. \overline{AC} \cong \overline{AC}$	2. Reflexive Property
$3. \overline{BA} \cong \overline{DA}$	3. DEFINITION OF MIDPOINT
4. ΔABC ≅ ΔADC	4. SSS