I can perform calculations using the midpoint formula.

- I can calculate the midpoint of a segment.
- I can apply the midpoint formula to solve a context problem.

Bisector: Line *l* bisects the segment. Find the indicated length.

1. Find EG if EF = 13 cm.

Midpoint Formula: 1 dimension

$$M = \frac{x_1 + x_2}{2}$$

2. Find the midpoint of the line segment.

$$M = \frac{11+23}{2} = \frac{34}{2} = 17$$

midpoint = 17

3. Using Midpoints: In the diagram, M is the midpoint of the segment. Find DE.

$$5(3.7)-6 = 12.5$$
 $2(3.7)+6 = 12.5$

$$5x-6$$
 $2x+5$

$$M$$
Equal pieces

$$5x-b = 2x+6$$

$$3x-b = 6$$

$$+6 + 6$$

$$8x = 11$$

$$3 = 11$$

$$3 = 3$$

$$3 = 3$$

Midpoint Formula: 2 dimensions

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
 Remember: a coordinate (x, y)

4. Find the midpoint of a line with the given endpoints: A(4, -3) and B(5, 6)

$$M = \left(\frac{4+6}{2}, \frac{-3+6}{2}\right) = \left(\frac{9}{2}, \frac{3}{2}\right) = \left(4.6, 1.6\right)$$

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{5+7}{2}, \frac{16+8}{2}\right) = \left(\frac{12}{2}, \frac{24}{2}\right) = (6, 12)$$

6. Find the second endpoint of the line with the given endpoint (P) and midpoint (M). a) P(7, -17) and M(-2, 3) - midpoint

x-values:
$$\frac{x_1}{1+x_2} = -a \cdot a \leftarrow \text{multiply by the reciprocal}$$

y-values:
$$y = \frac{y_1^2}{x^2} = \frac{y_2 - value of midpoint}{x^2} = \frac{y_2 - value of midpoint}{x^2} = \frac{y_2 - value of midpoint}{x^2} = \frac{y_2 - value of midpoint}{x^2}$$

$$-\frac{1}{1} + \frac{1}{2} = 6 + \frac{1}{1} + \frac{1}{1}$$

$$\frac{1}{1}$$

$$\frac{1}{1}$$

b) P(8, 0) and M(6, -5)

Step 1: plot points

Step 2: Figure out where other endpoint might go

Step 3: Count pattern from P to M Lett 2, Down 5

Step 4: Repeat Left 2, down 5 from M to your estimated spot in step 2

Step 5: Find coordinates of new point (Icalled it T)